朴素贝叶斯的基本算法和高斯混合朴素贝叶斯算法
- 2019 年 11 月 20 日
- 筆記
2. 朴素贝叶斯原理
朴素贝叶斯算法基于贝叶斯定理和特征条件独立假设。
- 贝叶斯定理
- 特征条件独立:特征条件独立假设?X的?n个特征在类确定的条件下都是条件独立的。大大简化了计算过程,但是因为这个假设太过严格,所以会相应牺牲一定的准确率。这也是为什么称呼为朴素的原因。
4.1 朴素贝叶斯的主要优点
- 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
- 对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。
- 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
4.2 朴素贝叶斯的主要缺点
- 朴素贝叶斯模型的特征条件独立假设在实际应用中往往是不成立的。
- 如果样本数据分布不能很好的代表样本空间分布,那先验概率容易测不准。
- 对输入数据的表达形式很敏感。
详细案例
算法杂货铺——分类算法之朴素贝叶斯分类
http://uml.org.cn/sjjmwj/201310221.asp
实现朴素贝叶斯的基本算法和高斯混合朴素贝叶斯算法
实战项目代码下载:
关注微信公众号 datanlp 然后回复 贝叶斯 即可获取下载链接。
class NaiveBayesBase(object):
def __init__(self):
pass
def fit(self, trainMatrix, trainCategory):
'''
朴素贝叶斯分类器训练函数,求:p(Ci),基于词汇表的p(w|Ci)
Args:
trainMatrix : 训练矩阵,即向量化表示后的文档(词条集合)
trainCategory : 文档中每个词条的列表标注
Return:
p0Vect : 属于0类别的概率向量(p(w1|C0),p(w2|C0),…,p(wn|C0))
p1Vect : 属于1类别的概率向量(p(w1|C1),p(w2|C1),…,p(wn|C1))
pAbusive : 属于1类别文档的概率
'''
numTrainDocs = len(trainMatrix)
# 长度为词汇表长度
numWords = len(trainMatrix[0])
# p(ci)
self.pAbusive = sum(trainCategory) / float(numTrainDocs)
# 由于后期要计算p(w|Ci)=p(w1|Ci)*p(w2|Ci)*…*p(wn|Ci),若wj未出现,则p(wj|Ci)=0,因此p(w|Ci)=0,这样显然是不对的
# 故在初始化时,将所有词的出现数初始化为1,分母即出现词条总数初始化为2
p0Num = np.ones(numWords)
p1Num = np.ones(numWords)
p0Denom = 2.0
p1Denom = 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
# p(wi | c1)
# 为了避免下溢出(当所有的p都很小时,再相乘会得到0.0,使用log则会避免得到0.0)
self.p1Vect = np.log(p1Num / p1Denom)
# p(wi | c2)
self.p0Vect = np.log(p0Num / p0Denom)
return self