通过Maxwell解析MySQL Binlog,打好业务多活的基础

  • 2019 年 11 月 11 日
  • 筆記

这是学习笔记的第 2153 篇文章

在Binlog解析方向和数据流转方向上,经常会提到比较有名的几类工具,阿里的Canal,Zendesk的Maxwell和Yelp的mysql_streamer,他们整体的情况如下:

主要设计思想是伪装MySQL Slave,通过与MySQL服务端协议通信,建立复制线程,从而获得主库推送的实时数据变化。

在功能完善性和生态建设上,Canal和Zendesk整体的表现要好一些,它们都是基于Java开发,支持多种模式的数据上下游集成,如果是想快速上手,Maxwell是一个不错的选择,而mysql_streamer的维护时间在2017年左右,在行业里看到的案例相对要少。

Maxwell相对比较精巧,它能实时读取MySQL二进制日志binlog,并生成 JSON 格式的消息,这一点是我优先考虑Maxwell的首要原因,当然它也可以作为生产者发送给 Kafka,Kinesis、RabbitMQ、Redis、Google Cloud Pub/Sub、文件或其它平台的应用程序。如果说使用场景,它的常见应用场景有ETL、维护缓存、收集表级别的DML指标、增量到搜索引擎、数据分区迁移等。

bin/maxwell –user='maxwell' –password='XXXXXX' –port=33071 –host=127.0.0.1 –gtid_mode=true –output_server_id=true –output_thread_id=true –output_schema_id=true –output_primary_keys=true –output_primary_key_columns=true –output_binlog_position=true –output_gtid_position=true –output_null_zerodates=true –output_ddl=true –producer=stdout

开启了全量的指标,通过全量的指标来权衡各种语句中必须的选项和解析逻辑.

我们先按照两个大的维度来梳理和总结。

  • DML语句梳理
  • 事务语句梳理

.DML语句调研梳理

主要覆盖Insert,Update,Delete,对返回的JSON数据进行梳理分析。

1) Insert语句

JSON返回数据

{  "database": "test",  "table": "test_data",  "type": "insert",  "ts": 1573024626,  "xid": 49482,  "commit": true,  "position": "binlog.000009:2466059",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:10310",  "server_id": 33091,  "thread_id": 147,  "schema_id": 5,  "primary_key": [3],  "primary_key_columns": ["id"],  "data": {  "id": 3,  "name": "cc"  }  }

语句解析设计

可以直接解析data中的数据,拼装为insert语句

字段列表需要根据data中的第1行数据进行拼装

需要解析的属性:

{  "database": "test",  "table": "test_data",  "type": "insert",  "ts": 1573024626,  "xid": 49482,  "commit": true,  "position": "binlog.000009:2466059",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:10310",  "server_id": 33091,  "data": {  "id": 3,  "name": "cc"  }  }

幂等伪SQL

Insert into [table]([id],[name]) values(?,?);

2) delete语句

JSON返回数据

{  "database": "test",  "table": "test_data",  "type": "delete",  "ts": 1573014236,  "xid": 39918,  "commit": true,  "position": "binlog.000009:1948897",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:8856",  "server_id": 33091,  "thread_id": 122,  "schema_id": 5,  "primary_key": [3],  "primary_key_columns": ["id"],  "data": {  "id": 3,  "name": "fff"  }  }

语句解析设计

{  "database": "test",  "table": "test_data",  "type": "delete",  "ts": 1573014236,  "xid": 39918,  "commit": true,  "position": "binlog.000009:1948897",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:8856",  "primary_key": [3],  "primary_key_columns": ["id"],  "data": {  "id": 3,  "name": "fff"  }  }

如果删除多行,假设SQL语句如下,删除两行数据:

delete from test_data where id>2;

Query OK, 2 rows affected (0.06 sec)

返回的JSON为:

{  "database": "test",  "table": "test_data",  "type": "delete",  "ts": 1573028638,  "xid": 54808,  "xoffset": 0,  "position": "binlog.000009:2754895",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:11120",  "primary_key": [3],  "primary_key_columns": ["id"],  }  {  "database": "test",  "table": "test_data",  "type": "delete",  "ts": 1573028638,  "xid": 54808,  "commit": true,  "position": "binlog.000009:2754895",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:11120",  "primary_key": [4],  "primary_key_columns": ["id"],  }

通过以上的分析和测试,可以看出delete操作可以关注于primary_key和primary_key_columns,得到相关的SQL语句,实现逻辑幂等性,

幂等伪SQL

Delete from [table] where [id]=?

3) update语句

JSON返回数据

{  "database": "test",  "table": "test_data",  "type": "update",  "ts": 1573024676,  "xid": 49552,  "commit": true,  "position": "binlog.000009:2470294",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:10322",  "server_id": 33091,  "thread_id": 147,  "schema_id": 5,  "primary_key": [3],  "primary_key_columns": ["id"],  "data": {  "id": 3,  "name": "ccc"  },  "old": {  "name": "cc"  }  }

语句解析设计

{  "database": "test",  "table": "test_data",  "type": "update",  "ts": 1573024676,  "xid": 49552,  "commit": true,  "position": "binlog.000009:2470294",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:10322",  "primary_key": [3],  "primary_key_columns": ["id"],  "data": {  "id": 3, --去除主键列  "name": "ccc"  },  "old": {  "name": "cc"  }  }

需要尽可能得到完整的Update语句。

幂等伪SQL

Update [table] set [name]=? Where [id]=? and [name]=?

4) 复杂SQL语句

表关联修改场景1:

mysql> update test_data set name='bb' where id in (select id from test_data2);

Query OK, 1 row affected (0.01 sec)

Rows matched: 1 Changed: 1 Warnings: 0

会转换为幂等的update语句。

{"database":"test","table":"test_data","type":"update","ts":1573096677,"xid":64394,"commit":true,"position":"binlog.000009:3276416","gtid":"f73d7025-f25b-11e9-9824-52540058c70f:12583","server_id":33091,"thread_id":170,"schema_id":6,"primary_key":[1],"primary_key_columns":["id"],"data":{"id":1,"name":"bb"},"old":{"name":"aa"}}

表关联修改场景2:

mysql> update test_data,test_data2 set test_data.name='cc' where test_data.id=test_data2.id and test_data2.name='aa';

Query OK, 1 row affected (0.01 sec)

Rows matched: 1 Changed: 1 Warnings: 0

{"database":"test","table":"test_data","type":"update","ts":1573097195,"xid":65078,"commit":true,"position":"binlog.000009:3314180","gtid":"f73d7025-f25b-11e9-9824-52540058c70f:12689","server_id":33091,"thread_id":170,"schema_id":6,"primary_key":[1],"primary_key_columns":["id"],"data":{"id":1,"name":"cc"},"old":{"name":"bb"}}

5) DML语句幂等小结

整体是基于行模式的解析,可以逻辑幂等的设计原则来进行完善。

语句类型

幂等SQL

insert

Insert into [table]([id],[name]) values(?,?);

delete

Delete from [table] where [id]=?

update

Update [table] set [name]=? Where [id]=? and [name]=?

通过以上的小结,其实我们可以明确对于分布式ID的强烈需求,这会是我们构筑业务多活的基础实现。

二。事务调研和梳理

1) SQL操作分析

mysql> begin;

Query OK, 0 rows affected (0.00 sec)

mysql> update test_data set name='cc' where id=3;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> insert into test_data values(4,'dd');

Query OK, 1 row affected (0.00 sec)

mysql> delete from test_data where id=2 and name='bb';

Query OK, 1 row affected (0.00 sec)

mysql> commit;

Query OK, 0 rows affected (0.01 sec)

2) JSON返回数据

{  "database": "test",  "table": "test_data",  "type": "update",  "ts": 1573024725,  "xid": 49621,  "xoffset": 0,  "position": "binlog.000009:2476678",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:10340",  "server_id": 33091,  "thread_id": 147,  "schema_id": 5,  "primary_key": [3],  "primary_key_columns": ["id"],  "data": {  "id": 3,  "name": "cc"  },  "old": {  "name": "ccc"  }  }  {  "database": "test",  "table": "test_data",  "type": "insert",  "ts": 1573024735,  "xid": 49621,  "xoffset": 1,  "position": "binlog.000009:2476778",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:10340",  "server_id": 33091,  "thread_id": 147,  "schema_id": 5,  "primary_key": [4],  "primary_key_columns": ["id"],  "data": {  "id": 4,  "name": "dd"  }  }  {  "database": "test",  "table": "test_data",  "type": "delete",  "ts": 1573024754,  "xid": 49621,  "commit": true,  "position": "binlog.000009:2476868",  "gtid": "f73d7025-f25b-11e9-9824-52540058c70f:10340",  "server_id": 33091,  "thread_id": 147,  "schema_id": 5,  "primary_key": [2],  "primary_key_columns": ["id"],  "data": {  "id": 2,  "name": "bb"  }  }

3) 语句逻辑解析设计

按照xoffset来递增,下标为0,最后一个事务没有xoffset,commit为true

对于insert,delete,update的解析逻辑可以复用DML处理的部分

SQL语句/命令

type

xid

timestamp

xid

xoffset

commit

begin;

update test_data set name='cc' where id=3;

update

49621

1573024725

147

0

insert into test_data values(4,'dd');

insert

49621

1573024735

147

1

delete from test_data where id=2 and name='bb';

delete

49621

1573024754

147

true

commit;

4) 大事务binlog

如果瞬间产生了大量的binlog,为了控制内存使用,会将处理延迟的binlog下沉到文件系统。

xxxxx INFO BinlogConnectorLifecycleListener – Binlog connected.

xxxxx INFO ListWithDiskBuffer – Overflowed in-memory buffer, spilling over into /tmp/maxwell7935334910787514257events

后续补充Maxwell解析DDL和设计中的一些潜在问题和补救措施。