Tomcat源码分析 (八)—– HTTP请求处理过程(一)

  • 2019 年 10 月 3 日
  • 筆記

终于进行到Connector的分析阶段了,这也是Tomcat里面最复杂的一块功能了。Connector中文名为连接器,既然是连接器,它肯定会连接某些东西,连接些什么呢?

Connector用于接受请求并将请求封装成Request和Response,然后交给Container进行处理,Container处理完之后再交给Connector返回给客户端。

要理解Connector,我们需要问自己4个问题。

  • (1)Connector如何接受请求的?
  • (2)如何将请求封装成Request和Response的?
  • (3)封装完之后的Request和Response如何交给Container进行处理的?
  • (4)Container处理完之后如何交给Connector并返回给客户端的?

先来一张Connector的整体结构图

【注意】:不同的协议、不同的通信方式,ProtocolHandler会有不同的实现。在Tomcat8.5中,ProtocolHandler的类继承层级如下图所示。

 

针对上述的类继承层级图,我们做如下说明:

  1. ajp和http11是两种不同的协议
  2. nio、nio2和apr是不同的通信方式
  3. 协议和通信方式可以相互组合。

ProtocolHandler包含三个部件:EndpointProcessorAdapter

  1. Endpoint用来处理底层Socket的网络连接,Processor用于将Endpoint接收到的Socket封装成Request,Adapter用于将Request交给Container进行具体的处理。
  2. Endpoint由于是处理底层的Socket网络连接,因此Endpoint是用来实现TCP/IP协议的,而Processor用来实现HTTP协议的,Adapter将请求适配到Servlet容器进行具体的处理。
  3. Endpoint的抽象实现类AbstractEndpoint里面定义了AcceptorAsyncTimeout两个内部类和一个Handler接口Acceptor用于监听请求,AsyncTimeout用于检查异步Request的超时,Handler用于处理接收到的Socket,在内部调用Processor进行处理。

至此,我们已经明白了问题(1)、(2)和(3)。至于(4),当我们了解了Container自然就明白了,前面章节内容已经详细分析过了。

Connector源码分析入口

 我们在Service标准实现StandardService的源码中发现,其init()start()stop()destroy()方法分别会对Connectors的同名方法进行调用。而一个Service对应着多个Connector

Service.init()

@Override  protected void initInternal() throws LifecycleException {      super.initInternal();        if (engine != null) {          engine.init();      }        // Initialize any Executors      for (Executor executor : findExecutors()) {          if (executor instanceof JmxEnabled) {              ((JmxEnabled) executor).setDomain(getDomain());          }          executor.init();      }        // Initialize mapper listener      mapperListener.init();        // Initialize our defined Connectors      synchronized (connectorsLock) {          for (Connector connector : connectors) {              try {                  connector.init();              } catch (Exception e) {                  String message = sm.getString(                          "standardService.connector.initFailed", connector);                  log.error(message, e);                    if (Boolean.getBoolean("org.apache.catalina.startup.EXIT_ON_INIT_FAILURE"))                      throw new LifecycleException(message);              }          }      }  }

Service.start()

@Override  protected void startInternal() throws LifecycleException {      if(log.isInfoEnabled())          log.info(sm.getString("standardService.start.name", this.name));      setState(LifecycleState.STARTING);        // Start our defined Container first      if (engine != null) {          synchronized (engine) {              engine.start();          }      }        synchronized (executors) {          for (Executor executor: executors) {              executor.start();          }      }        mapperListener.start();        // Start our defined Connectors second      synchronized (connectorsLock) {          for (Connector connector: connectors) {              try {                  // If it has already failed, don't try and start it                  if (connector.getState() != LifecycleState.FAILED) {                      connector.start();                  }              } catch (Exception e) {                  log.error(sm.getString(                          "standardService.connector.startFailed",                          connector), e);              }          }      }  }

我们知道Connector实现了Lifecycle接口,所以它是一个生命周期组件。所以Connector的启动逻辑入口在于init()start()

Connector构造方法

在分析之前,我们看看server.xml,该文件已经体现出了tomcat中各个组件的大体结构。

<?xml version='1.0' encoding='utf-8'?>  <Server port="8005" shutdown="SHUTDOWN">    <Listener className="org.apache.catalina.startup.VersionLoggerListener" />    <Listener className="org.apache.catalina.core.AprLifecycleListener" SSLEngine="on" />    <Listener className="org.apache.catalina.core.JreMemoryLeakPreventionListener" />    <Listener className="org.apache.catalina.mbeans.GlobalResourcesLifecycleListener" />    <Listener className="org.apache.catalina.core.ThreadLocalLeakPreventionListener" />      <GlobalNamingResources>      <Resource name="UserDatabase" auth="Container"                type="org.apache.catalina.UserDatabase"                description="User database that can be updated and saved"                factory="org.apache.catalina.users.MemoryUserDatabaseFactory"                pathname="conf/tomcat-users.xml" />    </GlobalNamingResources>      <Service name="Catalina">      <Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" />      <Connector port="8009" protocol="AJP/1.3" redirectPort="8443" />        <Engine name="Catalina" defaultHost="localhost">        <Realm className="org.apache.catalina.realm.LockOutRealm">          <Realm className="org.apache.catalina.realm.UserDatabaseRealm"                 resourceName="UserDatabase"/>        </Realm>          <Host name="localhost"  appBase="webapps"              unpackWARs="true" autoDeploy="true">          <Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs"                 prefix="localhost_access_log" suffix=".txt"                 pattern="%h %l %u %t &quot;%r&quot; %s %b" />        </Host>      </Engine>    </Service>  </Server>

在这个文件中,我们看到一个Connector有几个关键属性,portprotocol是其中的两个。server.xml默认支持两种协议:HTTP/1.1AJP/1.3。其中HTTP/1.1用于支持http1.1协议,而AJP/1.3用于支持对apache服务器的通信。

接下来我们看看构造方法。

public Connector() {      this(null); // 1. 无参构造方法,传入参数为空协议,会默认使用`HTTP/1.1`  }    public Connector(String protocol) {      setProtocol(protocol);      // Instantiate protocol handler      // 5. 使用protocolHandler的类名构造ProtocolHandler的实例      ProtocolHandler p = null;      try {          Class<?> clazz = Class.forName(protocolHandlerClassName);          p = (ProtocolHandler) clazz.getConstructor().newInstance();      } catch (Exception e) {          log.error(sm.getString(                  "coyoteConnector.protocolHandlerInstantiationFailed"), e);      } finally {          this.protocolHandler = p;      }        if (Globals.STRICT_SERVLET_COMPLIANCE) {          uriCharset = StandardCharsets.ISO_8859_1;      } else {          uriCharset = StandardCharsets.UTF_8;      }  }    @Deprecated  public void setProtocol(String protocol) {      boolean aprConnector = AprLifecycleListener.isAprAvailable() &&              AprLifecycleListener.getUseAprConnector();        // 2. `HTTP/1.1`或`null`,protocolHandler使用`org.apache.coyote.http11.Http11NioProtocol`,不考虑apr      if ("HTTP/1.1".equals(protocol) || protocol == null) {          if (aprConnector) {              setProtocolHandlerClassName("org.apache.coyote.http11.Http11AprProtocol");          } else {              setProtocolHandlerClassName("org.apache.coyote.http11.Http11NioProtocol");          }      }      // 3. `AJP/1.3`,protocolHandler使用`org.apache.coyote.ajp.AjpNioProtocol`,不考虑apr      else if ("AJP/1.3".equals(protocol)) {          if (aprConnector) {              setProtocolHandlerClassName("org.apache.coyote.ajp.AjpAprProtocol");          } else {              setProtocolHandlerClassName("org.apache.coyote.ajp.AjpNioProtocol");          }      }      // 4. 其他情况,使用传入的protocol作为protocolHandler的类名      else {          setProtocolHandlerClassName(protocol);      }  }

从上面的代码我们看到构造方法主要做了下面几件事情:

  1. 无参构造方法,传入参数为空协议,会默认使用HTTP/1.1
  2. HTTP/1.1null,protocolHandler使用org.apache.coyote.http11.Http11NioProtocol,不考虑apr
  3. AJP/1.3,protocolHandler使用org.apache.coyote.ajp.AjpNioProtocol,不考虑apr
  4. 其他情况,使用传入的protocol作为protocolHandler的类名
  5. 使用protocolHandler的类名构造ProtocolHandler的实例

Connector.init()

@Override  protected void initInternal() throws LifecycleException {      super.initInternal();        // Initialize adapter      // 1. 初始化adapter      adapter = new CoyoteAdapter(this);      protocolHandler.setAdapter(adapter);        // Make sure parseBodyMethodsSet has a default      // 2. 设置接受body的method列表,默认为POST      if (null == parseBodyMethodsSet) {          setParseBodyMethods(getParseBodyMethods());      }        if (protocolHandler.isAprRequired() && !AprLifecycleListener.isAprAvailable()) {          throw new LifecycleException(sm.getString("coyoteConnector.protocolHandlerNoApr",                  getProtocolHandlerClassName()));      }      if (AprLifecycleListener.isAprAvailable() && AprLifecycleListener.getUseOpenSSL() &&              protocolHandler instanceof AbstractHttp11JsseProtocol) {          AbstractHttp11JsseProtocol<?> jsseProtocolHandler =                  (AbstractHttp11JsseProtocol<?>) protocolHandler;          if (jsseProtocolHandler.isSSLEnabled() &&                  jsseProtocolHandler.getSslImplementationName() == null) {              // OpenSSL is compatible with the JSSE configuration, so use it if APR is available              jsseProtocolHandler.setSslImplementationName(OpenSSLImplementation.class.getName());          }      }        // 3. 初始化protocolHandler      try {          protocolHandler.init();      } catch (Exception e) {          throw new LifecycleException(                  sm.getString("coyoteConnector.protocolHandlerInitializationFailed"), e);      }  }

init()方法做了3件事情

  1. 初始化adapter
  2. 设置接受body的method列表,默认为POST
  3. 初始化protocolHandler

ProtocolHandler类继承层级我们知道ProtocolHandler的子类都必须实现AbstractProtocol抽象类,而protocolHandler.init();的逻辑代码正是在这个抽象类里面。我们来分析一下。

@Override  public void init() throws Exception {      if (getLog().isInfoEnabled()) {          getLog().info(sm.getString("abstractProtocolHandler.init", getName()));      }        if (oname == null) {          // Component not pre-registered so register it          oname = createObjectName();          if (oname != null) {              Registry.getRegistry(null, null).registerComponent(this, oname, null);          }      }        if (this.domain != null) {          rgOname = new ObjectName(domain + ":type=GlobalRequestProcessor,name=" + getName());          Registry.getRegistry(null, null).registerComponent(                  getHandler().getGlobal(), rgOname, null);      }        // 1. 设置endpoint的名字,默认为:http-nio-{port}      String endpointName = getName();      endpoint.setName(endpointName.substring(1, endpointName.length()-1));      endpoint.setDomain(domain);        // 2. 初始化endpoint      endpoint.init();  }

我们接着分析一下Endpoint.init()里面又做了什么。该方法位于AbstactEndpoint抽象类,该类是基于模板方法模式实现的,主要调用了子类的bind()方法。

public abstract void bind() throws Exception;  public abstract void unbind() throws Exception;  public abstract void startInternal() throws Exception;  public abstract void stopInternal() throws Exception;    public void init() throws Exception {      // 执行bind()方法      if (bindOnInit) {          bind();          bindState = BindState.BOUND_ON_INIT;      }      if (this.domain != null) {          // Register endpoint (as ThreadPool - historical name)          oname = new ObjectName(domain + ":type=ThreadPool,name="" + getName() + """);          Registry.getRegistry(null, null).registerComponent(this, oname, null);            ObjectName socketPropertiesOname = new ObjectName(domain +                  ":type=ThreadPool,name="" + getName() + "",subType=SocketProperties");          socketProperties.setObjectName(socketPropertiesOname);          Registry.getRegistry(null, null).registerComponent(socketProperties, socketPropertiesOname, null);            for (SSLHostConfig sslHostConfig : findSslHostConfigs()) {              registerJmx(sslHostConfig);          }      }  }

继续分析bind()方法,我们终于看到了我们想要看的东西了。关键的代码在于serverSock.socket().bind(addr,getAcceptCount());,用于绑定ServerSocket到指定的IP和端口。

@Override  public void bind() throws Exception {        if (!getUseInheritedChannel()) {          serverSock = ServerSocketChannel.open();          socketProperties.setProperties(serverSock.socket());          InetSocketAddress addr = (getAddress()!=null?new InetSocketAddress(getAddress(),getPort()):new InetSocketAddress(getPort()));          //绑定ServerSocket到指定的IP和端口          serverSock.socket().bind(addr,getAcceptCount());      } else {          // Retrieve the channel provided by the OS          Channel ic = System.inheritedChannel();          if (ic instanceof ServerSocketChannel) {              serverSock = (ServerSocketChannel) ic;          }          if (serverSock == null) {              throw new IllegalArgumentException(sm.getString("endpoint.init.bind.inherited"));          }      }        serverSock.configureBlocking(true); //mimic APR behavior        // Initialize thread count defaults for acceptor, poller      if (acceptorThreadCount == 0) {          // FIXME: Doesn't seem to work that well with multiple accept threads          acceptorThreadCount = 1;      }      if (pollerThreadCount <= 0) {          //minimum one poller thread          pollerThreadCount = 1;      }      setStopLatch(new CountDownLatch(pollerThreadCount));        // Initialize SSL if needed      initialiseSsl();        selectorPool.open();  }

好了,我们已经分析完了init()方法,接下来我们分析start()方法。关键代码就一行,调用ProtocolHandler.start()方法。

Connector.start()

@Override  protected void startInternal() throws LifecycleException {        // Validate settings before starting      if (getPort() < 0) {          throw new LifecycleException(sm.getString(                  "coyoteConnector.invalidPort", Integer.valueOf(getPort())));      }        setState(LifecycleState.STARTING);        try {          protocolHandler.start();      } catch (Exception e) {          throw new LifecycleException(                  sm.getString("coyoteConnector.protocolHandlerStartFailed"), e);      }  }

我们深入ProtocolHandler.start()方法。

  1. 调用Endpoint.start()方法
  2. 开启异步超时线程,线程执行单元为Asynctimeout
@Override  public void start() throws Exception {      if (getLog().isInfoEnabled()) {          getLog().info(sm.getString("abstractProtocolHandler.start", getName()));      }        // 1. 调用`Endpoint.start()`方法      endpoint.start();        // Start async timeout thread      // 2. 开启异步超时线程,线程执行单元为`Asynctimeout`      asyncTimeout = new AsyncTimeout();      Thread timeoutThread = new Thread(asyncTimeout, getNameInternal() + "-AsyncTimeout");      int priority = endpoint.getThreadPriority();      if (priority < Thread.MIN_PRIORITY || priority > Thread.MAX_PRIORITY) {          priority = Thread.NORM_PRIORITY;      }      timeoutThread.setPriority(priority);      timeoutThread.setDaemon(true);      timeoutThread.start();  }

这儿我们重点关注Endpoint.start()方法

public final void start() throws Exception {      // 1. `bind()`已经在`init()`中分析过了      if (bindState == BindState.UNBOUND) {          bind();          bindState = BindState.BOUND_ON_START;      }      startInternal();  }    @Override  public void startInternal() throws Exception {      if (!running) {          running = true;          paused = false;            processorCache = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,                  socketProperties.getProcessorCache());          eventCache = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,                          socketProperties.getEventCache());          nioChannels = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,                  socketProperties.getBufferPool());            // Create worker collection          // 2. 创建工作者线程池          if ( getExecutor() == null ) {              createExecutor();          }            // 3. 初始化连接latch,用于限制请求的并发量          initializeConnectionLatch();            // Start poller threads          // 4. 开启poller线程。poller用于对接受者线程生产的消息(或事件)进行处理,poller最终调用的是Handler的代码          pollers = new Poller[getPollerThreadCount()];          for (int i=0; i<pollers.length; i++) {              pollers[i] = new Poller();              Thread pollerThread = new Thread(pollers[i], getName() + "-ClientPoller-"+i);              pollerThread.setPriority(threadPriority);              pollerThread.setDaemon(true);              pollerThread.start();          }          // 5. 开启acceptor线程          startAcceptorThreads();      }  }    protected final void startAcceptorThreads() {      int count = getAcceptorThreadCount();      acceptors = new Acceptor[count];        for (int i = 0; i < count; i++) {          acceptors[i] = createAcceptor();          String threadName = getName() + "-Acceptor-" + i;          acceptors[i].setThreadName(threadName);          Thread t = new Thread(acceptors[i], threadName);          t.setPriority(getAcceptorThreadPriority());          t.setDaemon(getDaemon());          t.start();      }  }
  1. bind()已经在init()中分析过了
  2. 创建工作者线程池
  3. 初始化连接latch,用于限制请求的并发量
  4. 创建轮询Poller线程。poller用于对接受者线程生产的消息(或事件)进行处理,poller最终调用的是Handler的代码
  5. 创建Acceptor线程

Connector请求逻辑

分析完了Connector的启动逻辑之后,我们就需要进一步分析一下http的请求逻辑,当请求从客户端发起之后,需要经过哪些操作才能真正地得到执行?

Acceptor

Acceptor线程主要用于监听套接字,将已连接套接字转给Poller线程。Acceptor线程数由AbstracEndPoint的acceptorThreadCount成员变量控制,默认值为1

AbstractEndpoint.Acceptor是AbstractEndpoint类的静态抽象类,实现了Runnable接口,部分代码如下:

public abstract static class Acceptor implements Runnable {      public enum AcceptorState {          NEW, RUNNING, PAUSED, ENDED      }        protected volatile AcceptorState state = AcceptorState.NEW;      public final AcceptorState getState() {          return state;      }        private String threadName;      protected final void setThreadName(final String threadName) {          this.threadName = threadName;      }      protected final String getThreadName() {          return threadName;      }  }

NioEndpoint的Acceptor成员内部类继承了AbstractEndpoint.Acceptor:

protected class Acceptor extends AbstractEndpoint.Acceptor {      @Override      public void run() {          int errorDelay = 0;            // Loop until we receive a shutdown command          while (running) {                // Loop if endpoint is paused              // 1. 运行过程中,如果`Endpoint`暂停了,则`Acceptor`进行自旋(间隔50毫秒) `                     while (paused && running) {                  state = AcceptorState.PAUSED;                  try {                      Thread.sleep(50);                  } catch (InterruptedException e) {                      // Ignore                  }              }              // 2. 如果`Endpoint`终止运行了,则`Acceptor`也会终止              if (!running) {                  break;              }              state = AcceptorState.RUNNING;                try {                  //if we have reached max connections, wait                  // 3. 如果请求达到了最大连接数,则wait直到连接数降下来                  countUpOrAwaitConnection();                    SocketChannel socket = null;                  try {                      // Accept the next incoming connection from the server                      // socket                      // 4. 接受下一次连接的socket                      socket = serverSock.accept();                  } catch (IOException ioe) {                      // We didn't get a socket                      countDownConnection();                      if (running) {                          // Introduce delay if necessary                          errorDelay = handleExceptionWithDelay(errorDelay);                          // re-throw                          throw ioe;                      } else {                          break;                      }                  }                  // Successful accept, reset the error delay                  errorDelay = 0;                    // Configure the socket                  if (running && !paused) {                      // setSocketOptions() will hand the socket off to                      // an appropriate processor if successful                      // 5. `setSocketOptions()`这儿是关键,会将socket以事件的方式传递给poller                      if (!setSocketOptions(socket)) {                          closeSocket(socket);                      }                  } else {                      closeSocket(socket);                  }              } catch (Throwable t) {                  ExceptionUtils.handleThrowable(t);                  log.error(sm.getString("endpoint.accept.fail"), t);              }          }          state = AcceptorState.ENDED;      }  }

从以上代码可以看到:

  • countUpOrAwaitConnection函数检查当前最大连接数,若未达到maxConnections则加一,否则等待;
  • socket = serverSock.accept()这一行中的serverSock正是NioEndpoint的bind函数中打开的ServerSocketChannel。为了引用这个变量,NioEndpoint的Acceptor类是成员而不再是静态类;
  • setSocketOptions函数调用上的注释表明该函数将已连接套接字交给Poller线程处理。

setSocketOptions方法接着处理已连接套接字:

protected boolean setSocketOptions(SocketChannel socket) {      // Process the connection      try {          //disable blocking, APR style, we are gonna be polling it          socket.configureBlocking(false);          Socket sock = socket.socket();          socketProperties.setProperties(sock);            NioChannel channel = nioChannels.pop();          if (channel == null) {              SocketBufferHandler bufhandler = new SocketBufferHandler(                      socketProperties.getAppReadBufSize(),                      socketProperties.getAppWriteBufSize(),                      socketProperties.getDirectBuffer());              if (isSSLEnabled()) {                  channel = new SecureNioChannel(socket, bufhandler, selectorPool, this);              } else {                  channel = new NioChannel(socket, bufhandler);              }          } else {              channel.setIOChannel(socket);              channel.reset();          }          // 将channel注册到poller,注意关键的两个方法,`getPoller0()`和`Poller.register()`          getPoller0().register(channel);      } catch (Throwable t) {          ExceptionUtils.handleThrowable(t);          try {              log.error("",t);          } catch (Throwable tt) {              ExceptionUtils.handleThrowable(tt);          }          // Tell to close the socket          return false;      }      return true;  }
  • 从NioChannel栈中出栈一个,若能重用(即不为null)则重用对象,否则新建一个NioChannel对象;
  • getPoller0方法利用轮转法选择一个Poller线程,利用Poller类的register方法将上述NioChannel对象注册到该Poller线程上;
  • 若成功转给Poller线程该函数返回true,否则返回false。返回false后,Acceptor类的closeSocket函数会关闭通道和底层Socket连接并将当前最大连接数减一。

Poller

Poller线程主要用于以较少的资源轮询已连接套接字以保持连接,当数据可用时转给工作线程。

Poller线程数由NioEndPoint的pollerThreadCount成员变量控制,默认值为2与可用处理器数二者之间的较小值。
Poller实现了Runnable接口,可以看到构造函数为每个Poller打开了一个新的Selector。

public class Poller implements Runnable {      private Selector selector;      private final SynchronizedQueue<PollerEvent> events =              new SynchronizedQueue<>();      // 省略一些代码      public Poller() throws IOException {          this.selector = Selector.open();      }        public Selector getSelector() { return selector;}      // 省略一些代码  }

将channel注册到poller,注意关键的两个方法,getPoller0()Poller.register()。先来分析一下getPoller0(),该方法比较关键的一个地方就是以取模的方式对poller数量进行轮询获取。

/**   * The socket poller.   */  private Poller[] pollers = null;  private AtomicInteger pollerRotater = new AtomicInteger(0);  /**   * Return an available poller in true round robin fashion.   *   * @return The next poller in sequence   */  public Poller getPoller0() {      int idx = Math.abs(pollerRotater.incrementAndGet()) % pollers.length;      return pollers[idx];  }

接下来我们分析一下Poller.register()方法。因为Poller维持了一个events同步队列,所以Acceptor接受到的channel会放在这个队列里面,放置的代码为events.offer(event);

public class Poller implements Runnable {        private final SynchronizedQueue<PollerEvent> events = new SynchronizedQueue<>();        /**       * Registers a newly created socket with the poller.       *       * @param socket    The newly created socket       */      public void register(final NioChannel socket) {          socket.setPoller(this);          NioSocketWrapper ka = new NioSocketWrapper(socket, NioEndpoint.this);          socket.setSocketWrapper(ka);          ka.setPoller(this);          ka.setReadTimeout(getSocketProperties().getSoTimeout());          ka.setWriteTimeout(getSocketProperties().getSoTimeout());          ka.setKeepAliveLeft(NioEndpoint.this.getMaxKeepAliveRequests());          ka.setSecure(isSSLEnabled());          ka.setReadTimeout(getConnectionTimeout());          ka.setWriteTimeout(getConnectionTimeout());          PollerEvent r = eventCache.pop();          ka.interestOps(SelectionKey.OP_READ);//this is what OP_REGISTER turns into.          if ( r==null) r = new PollerEvent(socket,ka,OP_REGISTER);          else r.reset(socket,ka,OP_REGISTER);          addEvent(r);      }        private void addEvent(PollerEvent event) {          events.offer(event);          if ( wakeupCounter.incrementAndGet() == 0 ) selector.wakeup();      }  }

PollerEvent

接下来看一下PollerEvent,PollerEvent实现了Runnable接口,用来表示一个轮询事件,代码如下:

public static class PollerEvent implements Runnable {      private NioChannel socket;      private int interestOps;      private NioSocketWrapper socketWrapper;        public PollerEvent(NioChannel ch, NioSocketWrapper w, int intOps) {          reset(ch, w, intOps);      }        public void reset(NioChannel ch, NioSocketWrapper w, int intOps) {          socket = ch;          interestOps = intOps;          socketWrapper = w;      }        public void reset() {          reset(null, null, 0);      }        @Override      public void run() {          if (interestOps == OP_REGISTER) {              try {                  socket.getIOChannel().register(                          socket.getPoller().getSelector(), SelectionKey.OP_READ, socketWrapper);              } catch (Exception x) {                  log.error(sm.getString("endpoint.nio.registerFail"), x);              }          } else {              final SelectionKey key = socket.getIOChannel().keyFor(socket.getPoller().getSelector());              try {                  if (key == null) {                      socket.socketWrapper.getEndpoint().countDownConnection();                      ((NioSocketWrapper) socket.socketWrapper).closed = true;                  } else {                      final NioSocketWrapper socketWrapper = (NioSocketWrapper) key.attachment();                      if (socketWrapper != null) {                          //we are registering the key to start with, reset the fairness counter.                          int ops = key.interestOps() | interestOps;                          socketWrapper.interestOps(ops);                          key.interestOps(ops);                      } else {                          socket.getPoller().cancelledKey(key);                      }                  }              } catch (CancelledKeyException ckx) {                  try {                      socket.getPoller().cancelledKey(key);                  } catch (Exception ignore) {}              }          }      }    }

在run函数中:

  • 若感兴趣集是自定义的OP_REGISTER,则说明该事件表示的已连接套接字通道尚未被轮询线程处理过,那么将该通道注册到Poller线程的Selector上,感兴趣集是OP_READ,通道注册的附件是一个NioSocketWrapper对象。从Poller的register方法添加事件即是这样的过程;
  • 否则获得已连接套接字通道注册到Poller线程的Selector上的SelectionKey,为key添加新的感兴趣集。

重访Poller

上文提到Poller类实现了Runnable接口,其重写的run方法如下所示。

public boolean events() {      boolean result = false;      PollerEvent pe = null;      for (int i = 0, size = events.size(); i < size && (pe = events.poll()) != null; i++ ) {          result = true;          try {              //直接调用run方法              pe.run();              pe.reset();              if (running && !paused) {                  eventCache.push(pe);              }          } catch ( Throwable x ) {              log.error("",x);          }      }      return result;  }    @Override  public void run() {      // Loop until destroy() is called      while (true) {          boolean hasEvents = false;            try {              if (!close) {                  /执行PollerEvent的run方法                  hasEvents = events();                  if (wakeupCounter.getAndSet(-1) > 0) {                      //if we are here, means we have other stuff to do                      //do a non blocking select                      keyCount = selector.selectNow();                  } else {                      keyCount = selector.select(selectorTimeout);                  }                  wakeupCounter.set(0);              }              if (close) {                  events();                  timeout(0, false);                  try {                      selector.close();                  } catch (IOException ioe) {                      log.error(sm.getString("endpoint.nio.selectorCloseFail"), ioe);                  }                  break;              }          } catch (Throwable x) {              ExceptionUtils.handleThrowable(x);              log.error("",x);              continue;          }          //either we timed out or we woke up, process events first          if ( keyCount == 0 ) hasEvents = (hasEvents | events());            // 获取当前选择器中所有注册的“选择键(已就绪的监听事件)”          Iterator<SelectionKey> iterator =              keyCount > 0 ? selector.selectedKeys().iterator() : null;          // Walk through the collection of ready keys and dispatch          // any active event.          // 对已经准备好的key进行处理          while (iterator != null && iterator.hasNext()) {              SelectionKey sk = iterator.next();              NioSocketWrapper attachment = (NioSocketWrapper)sk.attachment();              // Attachment may be null if another thread has called              // cancelledKey()              if (attachment == null) {                  iterator.remove();              } else {                  iterator.remove();                  // 真正处理key的地方                  processKey(sk, attachment);              }          }//while            //process timeouts          timeout(keyCount,hasEvents);      }//while        getStopLatch().countDown();  }
  • 若队列里有元素则会先把队列里的事件均执行一遍,PollerEvent的run方法会将通道注册到Poller的Selector上;
  • 对select返回的SelectionKey进行处理,由于在PollerEvent中注册通道时带上了NioSocketWrapper附件,因此这里可以用SelectionKey的attachment方法得到,接着调用processKey去处理已连接套接字通道。

我们接着分析processKey(),该方法又会根据key的类型,来分别处理读和写。

  1. 处理读事件,比如生成Request对象
  2. 处理写事件,比如将生成的Response对象通过socket写回客户端
protected void processKey(SelectionKey sk, NioSocketWrapper attachment) {      try {          if ( close ) {              cancelledKey(sk);          } else if ( sk.isValid() && attachment != null ) {              if (sk.isReadable() || sk.isWritable() ) {                  if ( attachment.getSendfileData() != null ) {                      processSendfile(sk,attachment, false);                  } else {                      unreg(sk, attachment, sk.readyOps());                      boolean closeSocket = false;                      // 1. 处理读事件,比如生成Request对象                      // Read goes before write                      if (sk.isReadable()) {                          if (!processSocket(attachment, SocketEvent.OPEN_READ, true)) {                              closeSocket = true;                          }                      }                      // 2. 处理写事件,比如将生成的Response对象通过socket写回客户端                      if (!closeSocket && sk.isWritable()) {                          if (!processSocket(attachment, SocketEvent.OPEN_WRITE, true)) {                              closeSocket = true;                          }                      }                      if (closeSocket) {                          cancelledKey(sk);                      }                  }              }          } else {              //invalid key              cancelledKey(sk);          }      } catch ( CancelledKeyException ckx ) {          cancelledKey(sk);      } catch (Throwable t) {          ExceptionUtils.handleThrowable(t);          log.error("",t);      }  }

我们继续来分析方法processSocket()

  1. processorCache里面拿一个Processor来处理socket,Processor的实现为SocketProcessor
  2. Processor放到工作线程池中执行
public boolean processSocket(SocketWrapperBase<S> socketWrapper,          SocketEvent event, boolean dispatch) {      try {          if (socketWrapper == null) {              return false;          }          // 1. 从`processorCache`里面拿一个`Processor`来处理socket,`Processor`的实现为`SocketProcessor`          SocketProcessorBase<S> sc = processorCache.pop();          if (sc == null) {              sc = createSocketProcessor(socketWrapper, event);          } else {              sc.reset(socketWrapper, event);          }          // 2. 将`Processor`放到工作线程池中执行          Executor executor = getExecutor();          if (dispatch && executor != null) {              executor.execute(sc);          } else {              sc.run();          }      } catch (RejectedExecutionException ree) {          getLog().warn(sm.getString("endpoint.executor.fail", socketWrapper) , ree);          return false;      } catch (Throwable t) {          ExceptionUtils.handleThrowable(t);          // This means we got an OOM or similar creating a thread, or that          // the pool and its queue are full          getLog().error(sm.getString("endpoint.process.fail"), t);          return false;      }      return true;  }

dispatch参数表示是否要在另外的线程中处理,上文processKey各处传递的参数都是true。

  • dispatch为true且工作线程池存在时会执行executor.execute(sc),之后是由工作线程池处理已连接套接字;
  • 否则继续由Poller线程自己处理已连接套接字。

AbstractEndPoint类的createSocketProcessor是抽象方法,NioEndPoint类实现了它:

@Override  protected SocketProcessorBase<NioChannel> createSocketProcessor(          SocketWrapperBase<NioChannel> socketWrapper, SocketEvent event) {      return new SocketProcessor(socketWrapper, event);  }

接着我们分析SocketProcessor.doRun()方法(SocketProcessor.run()方法最终调用此方法)。该方法将处理逻辑交给Handler处理,当event为null时,则表明是一个OPEN_READ事件。

该类的注释说明SocketProcessor与Worker的作用等价。

/**   * This class is the equivalent of the Worker, but will simply use in an   * external Executor thread pool.   */  protected class SocketProcessor extends SocketProcessorBase<NioChannel> {        public SocketProcessor(SocketWrapperBase<NioChannel> socketWrapper, SocketEvent event) {          super(socketWrapper, event);      }        @Override      protected void doRun() {          NioChannel socket = socketWrapper.getSocket();          SelectionKey key = socket.getIOChannel().keyFor(socket.getPoller().getSelector());            try {              int handshake = -1;                try {                  if (key != null) {                      if (socket.isHandshakeComplete()) {                          // No TLS handshaking required. Let the handler                          // process this socket / event combination.                          handshake = 0;                      } else if (event == SocketEvent.STOP || event == SocketEvent.DISCONNECT ||                              event == SocketEvent.ERROR) {                          // Unable to complete the TLS handshake. Treat it as                          // if the handshake failed.                          handshake = -1;                      } else {                          handshake = socket.handshake(key.isReadable(), key.isWritable());                          // The handshake process reads/writes from/to the                          // socket. status may therefore be OPEN_WRITE once                          // the handshake completes. However, the handshake                          // happens when the socket is opened so the status                          // must always be OPEN_READ after it completes. It                          // is OK to always set this as it is only used if                          // the handshake completes.                          event = SocketEvent.OPEN_READ;                      }                  }              } catch (IOException x) {                  handshake = -1;                  if (log.isDebugEnabled()) log.debug("Error during SSL handshake",x);              } catch (CancelledKeyException ckx) {                  handshake = -1;              }              if (handshake == 0) {                  SocketState state = SocketState.OPEN;                  // Process the request from this socket                  // 将处理逻辑交给`Handler`处理,当event为null时,则表明是一个`OPEN_READ`事件                  if (event == null) {                      state = getHandler().process(socketWrapper, SocketEvent.OPEN_READ);                  } else {                      state = getHandler().process(socketWrapper, event);                  }                  if (state == SocketState.CLOSED) {                      close(socket, key);                  }              } else if (handshake == -1 ) {                  close(socket, key);              } else if (handshake == SelectionKey.OP_READ){                  socketWrapper.registerReadInterest();              } else if (handshake == SelectionKey.OP_WRITE){                  socketWrapper.registerWriteInterest();              }          } catch (CancelledKeyException cx) {              socket.getPoller().cancelledKey(key);          } catch (VirtualMachineError vme) {              ExceptionUtils.handleThrowable(vme);          } catch (Throwable t) {              log.error("", t);              socket.getPoller().cancelledKey(key);          } finally {              socketWrapper = null;              event = null;              //return to cache              if (running && !paused) {                  processorCache.push(this);              }          }      }  }

Handler的关键方法是process(),虽然这个方法有很多条件分支,但是逻辑却非常清楚,主要是调用Processor.process()方法。

@Override  public SocketState process(SocketWrapperBase<S> wrapper, SocketEvent status) {      try {            if (processor == null) {              processor = getProtocol().createProcessor();              register(processor);          }            processor.setSslSupport(                  wrapper.getSslSupport(getProtocol().getClientCertProvider()));            // Associate the processor with the connection          connections.put(socket, processor);            SocketState state = SocketState.CLOSED;          do {              // 关键的代码,终于找到你了              state = processor.process(wrapper, status);            } while ( state == SocketState.UPGRADING);          return state;      }      catch (Throwable e) {          ExceptionUtils.handleThrowable(e);          // any other exception or error is odd. Here we log it          // with "ERROR" level, so it will show up even on          // less-than-verbose logs.          getLog().error(sm.getString("abstractConnectionHandler.error"), e);      } finally {          ContainerThreadMarker.clear();      }        // Make sure socket/processor is removed from the list of current      // connections      connections.remove(socket);      release(processor);      return SocketState.CLOSED;  }

Processor

createProcessor 

protected Http11Processor createProcessor() {      // 构建 Http11Processor      Http11Processor processor = new Http11Processor(              proto.getMaxHttpHeaderSize(), (JIoEndpoint)proto.endpoint, // 1. http header 的最大尺寸              proto.getMaxTrailerSize(),proto.getMaxExtensionSize());      processor.setAdapter(proto.getAdapter());      // 2. 默认的 KeepAlive 情况下, 每个 Socket 处理的最多的 请求次数      processor.setMaxKeepAliveRequests(proto.getMaxKeepAliveRequests());      // 3. 开启 KeepAlive 的 Timeout      processor.setKeepAliveTimeout(proto.getKeepAliveTimeout());      // 4. http 当遇到文件上传时的 默认超时时间 (300 * 1000)          processor.setConnectionUploadTimeout(              proto.getConnectionUploadTimeout());      processor.setDisableUploadTimeout(proto.getDisableUploadTimeout());      // 5. 当 http 请求的 body size超过这个值时, 通过 gzip 进行压缩      processor.setCompressionMinSize(proto.getCompressionMinSize());      // 6. http 请求是否开启 compression 处理          processor.setCompression(proto.getCompression());      processor.setNoCompressionUserAgents(proto.getNoCompressionUserAgents());      // 7. http body里面的内容是 "text/html,text/xml,text/plain" 才会进行 压缩处理      processor.setCompressableMimeTypes(proto.getCompressableMimeTypes());      processor.setRestrictedUserAgents(proto.getRestrictedUserAgents());      // 8. socket 的 buffer, 默认 9000      processor.setSocketBuffer(proto.getSocketBuffer());      // 9. 最大的 Post 处理尺寸的大小 4 * 1000          processor.setMaxSavePostSize(proto.getMaxSavePostSize());      processor.setServer(proto.getServer());      processor.setDisableKeepAlivePercentage(              proto.getDisableKeepAlivePercentage());      register(processor);      return processor;  }

这儿我们主要关注的是Processor对于读的操作,也只有一行代码。调用service()方法。

public abstract class AbstractProcessorLight implements Processor {        @Override      public SocketState process(SocketWrapperBase<?> socketWrapper, SocketEvent status)              throws IOException {            SocketState state = SocketState.CLOSED;          Iterator<DispatchType> dispatches = null;          do {              if (dispatches != null) {                  DispatchType nextDispatch = dispatches.next();                  state = dispatch(nextDispatch.getSocketStatus());              } else if (status == SocketEvent.DISCONNECT) {                  // Do nothing here, just wait for it to get recycled              } else if (isAsync() || isUpgrade() || state == SocketState.ASYNC_END) {                  state = dispatch(status);                  if (state == SocketState.OPEN) {                      // There may be pipe-lined data to read. If the data isn't                      // processed now, execution will exit this loop and call                      // release() which will recycle the processor (and input                      // buffer) deleting any pipe-lined data. To avoid this,                      // process it now.                      state = service(socketWrapper);                  }              } else if (status == SocketEvent.OPEN_WRITE) {                  // Extra write event likely after async, ignore                  state = SocketState.LONG;              } else if (status == SocketEvent.OPEN_READ){                  // 调用`service()`方法                  state = service(socketWrapper);              } else {                  // Default to closing the socket if the SocketEvent passed in                  // is not consistent with the current state of the Processor                  state = SocketState.CLOSED;              }                if (getLog().isDebugEnabled()) {                  getLog().debug("Socket: [" + socketWrapper +                          "], Status in: [" + status +                          "], State out: [" + state + "]");              }                if (state != SocketState.CLOSED && isAsync()) {                  state = asyncPostProcess();                  if (getLog().isDebugEnabled()) {                      getLog().debug("Socket: [" + socketWrapper +                              "], State after async post processing: [" + state + "]");                  }              }                if (dispatches == null || !dispatches.hasNext()) {                  // Only returns non-null iterator if there are                  // dispatches to process.                  dispatches = getIteratorAndClearDispatches();              }          } while (state == SocketState.ASYNC_END ||                  dispatches != null && state != SocketState.CLOSED);            return state;      }  }

Processor.service()方法比较重要的地方就两点。该方法非常得长,也超过了200行,在此我们不再拷贝此方法的代码。

  1. 生成Request和Response对象
  2. 调用Adapter.service()方法,将生成的Request和Response对象传进去

Adapter

Adapter用于连接ConnectorContainer,起到承上启下的作用。Processor会调用Adapter.service()方法。我们来分析一下,主要做了下面几件事情:

  1. 根据coyote框架的request和response对象,生成connector的request和response对象(是HttpServletRequest和HttpServletResponse的封装)
  2. 补充header
  3. 解析请求,该方法会出现代理服务器、设置必要的header等操作
  4. 真正进入容器的地方,调用Engine容器下pipeline的阀门
  5. 通过request.finishRequest 与 response.finishResponse(刷OutputBuffer中的数据到浏览器) 来完成整个请求
@Override  public void service(org.apache.coyote.Request req, org.apache.coyote.Response res)          throws Exception {        // 1. 根据coyote框架的request和response对象,生成connector的request和response对象(是HttpServletRequest和HttpServletResponse的封装)      Request request = (Request) req.getNote(ADAPTER_NOTES);      Response response = (Response) res.getNote(ADAPTER_NOTES);        if (request == null) {          // Create objects          request = connector.createRequest();          request.setCoyoteRequest(req);          response = connector.createResponse();          response.setCoyoteResponse(res);            // Link objects          request.setResponse(response);          response.setRequest(request);            // Set as notes          req.setNote(ADAPTER_NOTES, request);          res.setNote(ADAPTER_NOTES, response);            // Set query string encoding          req.getParameters().setQueryStringCharset(connector.getURICharset());      }        // 2. 补充header      if (connector.getXpoweredBy()) {          response.addHeader("X-Powered-By", POWERED_BY);      }        boolean async = false;      boolean postParseSuccess = false;        req.getRequestProcessor().setWorkerThreadName(THREAD_NAME.get());        try {          // Parse and set Catalina and configuration specific          // request parameters          // 3. 解析请求,该方法会出现代理服务器、设置必要的header等操作          // 用来处理请求映射 (获取 host, context, wrapper, URI 后面的参数的解析, sessionId )          postParseSuccess = postParseRequest(req, request, res, response);          if (postParseSuccess) {              //check valves if we support async              request.setAsyncSupported(                      connector.getService().getContainer().getPipeline().isAsyncSupported());              // Calling the container              // 4. 真正进入容器的地方,调用Engine容器下pipeline的阀门              connector.getService().getContainer().getPipeline().getFirst().invoke(                      request, response);          }          if (request.isAsync()) {              async = true;              ReadListener readListener = req.getReadListener();              if (readListener != null && request.isFinished()) {                  // Possible the all data may have been read during service()                  // method so this needs to be checked here                  ClassLoader oldCL = null;                  try {                      oldCL = request.getContext().bind(false, null);                      if (req.sendAllDataReadEvent()) {                          req.getReadListener().onAllDataRead();                      }                  } finally {                      request.getContext().unbind(false, oldCL);                  }              }                Throwable throwable =                      (Throwable) request.getAttribute(RequestDispatcher.ERROR_EXCEPTION);                // If an async request was started, is not going to end once              // this container thread finishes and an error occurred, trigger              // the async error process              if (!request.isAsyncCompleting() && throwable != null) {                  request.getAsyncContextInternal().setErrorState(throwable, true);              }          } else {              //5. 通过request.finishRequest 与 response.finishResponse(刷OutputBuffer中的数据到浏览器) 来完成整个请求              request.finishRequest();              //将 org.apache.catalina.connector.Response对应的 OutputBuffer 中的数据 刷到 org.apache.coyote.Response 对应的 InternalOutputBuffer 中, 并且最终调用 socket对应的 outputStream 将数据刷出去( 这里会组装 Http Response 中的 header 与 body 里面的数据, 并且刷到远端 )              response.finishResponse();          }        } catch (IOException e) {          // Ignore      } finally {          AtomicBoolean error = new AtomicBoolean(false);          res.action(ActionCode.IS_ERROR, error);            if (request.isAsyncCompleting() && error.get()) {              // Connection will be forcibly closed which will prevent              // completion happening at the usual point. Need to trigger              // call to onComplete() here.              res.action(ActionCode.ASYNC_POST_PROCESS,  null);              async = false;          }            // Access log          if (!async && postParseSuccess) {              // Log only if processing was invoked.              // If postParseRequest() failed, it has already logged it.              Context context = request.getContext();              // If the context is null, it is likely that the endpoint was              // shutdown, this connection closed and the request recycled in              // a different thread. That thread will have updated the access              // log so it is OK not to update the access log here in that              // case.              if (context != null) {                  context.logAccess(request, response,                          System.currentTimeMillis() - req.getStartTime(), false);              }          }            req.getRequestProcessor().setWorkerThreadName(null);            // Recycle the wrapper request and response          if (!async) {              request.recycle();              response.recycle();          }      }  }

请求预处理

postParseRequest方法对请求做预处理,如对路径去除分号表示的路径参数、进行URI解码、规格化(点号和两点号)

 

protected boolean postParseRequest(org.apache.coyote.Request req, Request request,          org.apache.coyote.Response res, Response response) throws IOException, ServletException {      // 省略部分代码      MessageBytes decodedURI = req.decodedURI();        if (undecodedURI.getType() == MessageBytes.T_BYTES) {          // Copy the raw URI to the decodedURI          decodedURI.duplicate(undecodedURI);            // Parse the path parameters. This will:          //   - strip out the path parameters          //   - convert the decodedURI to bytes          parsePathParameters(req, request);            // URI decoding          // %xx decoding of the URL          try {              req.getURLDecoder().convert(decodedURI, false);          } catch (IOException ioe) {              res.setStatus(400);              res.setMessage("Invalid URI: " + ioe.getMessage());              connector.getService().getContainer().logAccess(                      request, response, 0, true);              return false;          }          // Normalization          if (!normalize(req.decodedURI())) {              res.setStatus(400);              res.setMessage("Invalid URI");              connector.getService().getContainer().logAccess(                      request, response, 0, true);              return false;          }          // Character decoding          convertURI(decodedURI, request);          // Check that the URI is still normalized          if (!checkNormalize(req.decodedURI())) {              res.setStatus(400);              res.setMessage("Invalid URI character encoding");              connector.getService().getContainer().logAccess(                      request, response, 0, true);              return false;          }      } else {          /* The URI is chars or String, and has been sent using an in-memory              * protocol handler. The following assumptions are made:              * - req.requestURI() has been set to the 'original' non-decoded,              *   non-normalized URI              * - req.decodedURI() has been set to the decoded, normalized form              *   of req.requestURI()              */          decodedURI.toChars();          // Remove all path parameters; any needed path parameter should be set          // using the request object rather than passing it in the URL          CharChunk uriCC = decodedURI.getCharChunk();          int semicolon = uriCC.indexOf(';');          if (semicolon > 0) {              decodedURI.setChars                  (uriCC.getBuffer(), uriCC.getStart(), semicolon);          }      }        // Request mapping.      MessageBytes serverName;      if (connector.getUseIPVHosts()) {          serverName = req.localName();          if (serverName.isNull()) {              // well, they did ask for it              res.action(ActionCode.REQ_LOCAL_NAME_ATTRIBUTE, null);          }      } else {          serverName = req.serverName();      }        // Version for the second mapping loop and      // Context that we expect to get for that version      String version = null;      Context versionContext = null;      boolean mapRequired = true;        while (mapRequired) {          // This will map the the latest version by default          connector.getService().getMapper().map(serverName, decodedURI,                  version, request.getMappingData());          // 省略部分代码      }      // 省略部分代码  }

以MessageBytes的类型是T_BYTES为例:

  • parsePathParameters方法去除URI中分号表示的路径参数;
  • req.getURLDecoder()得到一个UDecoder实例,它的convert方法对URI解码,这里的解码只是移除百分号,计算百分号后两位的十六进制数字值以替代原来的三位百分号编码;
  • normalize方法规格化URI,解释路径中的“.”和“..”;
  • convertURI方法利用Connector的uriEncoding属性将URI的字节转换为字符表示;
  • 注意connector.getService().getMapper().map(serverName, decodedURI, version, request.getMappingData()) 这行,之前Service启动时MapperListener注册了该Service内的各Host和Context。根据URI选择Context时,Mapper的map方法采用的是convertURI方法解码后的URI与每个Context的路径去比较

容器处理

如果请求可以被传给容器的Pipeline即当postParseRequest方法返回true时,则由容器继续处理,在service方法中有connector.getService().getContainer().getPipeline().getFirst().invoke(request, response)这一行:

  • Connector调用getService返回StandardService;
  • StandardService调用getContainer返回StandardEngine;
  • StandardEngine调用getPipeline返回与其关联的StandardPipeline;

 后续处理流程请看下一篇文章

 

 

Exit mobile version