从零写一个编译器(九):语义分析之构造抽象语法树(AST)

  • 2019 年 10 月 3 日
  • 筆記

项目的完整代码在 C2j-Compiler

前言

在上一篇完成了符号表的构建,下一步就是输出抽象语法树(Abstract Syntax Tree,AST)

抽象语法树(abstract syntax tree 或者缩写为 AST),是源代码的抽象语法结构的树状表现形式,这里特指编程语言的源代码。树上的每个节点都表示源代码中的一种结构。

AST对于编译器是至关重要的,现在的编译型语言一般通过AST来生成IR,解释型语言也可以不用虚拟机而直接遍历AST来解释执行,之后要写解释器和编译器都依赖这个AST

这一篇主要文件有:

  • AstBuilder.java
  • AstNode.java
  • AstNodeImpl.java
  • NodeKey.java
  • NodeFactory.java

主要数据结构

AST节点的表示

public interface AstNode {        AstNode addChild(AstNode node);        AstNode getParent();        ArrayList<AstNode> getChildren();        void setAttribute(NodeKey key, Object value);        Object getAttribute(NodeKey key);        boolean isChildrenReverse();        void reverseChildren();        AstNode copy();    }

这是对AstNode接口的实现,并且继承HashMap,这里的NodeKey是

TokenType, VALUE, SYMBOL, PRODUCTION, TEXT

对应的value,

  1. TokenType就是非终结符的类型
  2. Text用来存储解析对象的文本信息
  3. Symbol对应的就是变量的符号对象
  4. Value是对应对象解析的值,比如int a = 1,那么value的值就为1
public class AstNodeImpl extends HashMap<NodeKey, Object> implements AstNode {      private Token type;      private AstNodeImpl parent;      private ArrayList<AstNode> children;      String name;        private boolean isChildrenReverse = false;        public AstNodeImpl(Token type) {          this.type = type;          this.parent = null;          this.children = new ArrayList<>();          setAttribute(NodeKey.TokenType, type);      }        @Override      public AstNode addChild(AstNode node) {          if (node != null) {              children.add(node);              ((AstNodeImpl) node).parent = this;          }            return node;      }        @Override      public AstNode getParent() {          return parent;      }        @Override      public void reverseChildren() {          if (isChildrenReverse) {              return;          }            Collections.reverse(children);          isChildrenReverse = true;      }        @Override      public boolean isChildrenReverse() {          return isChildrenReverse;      }        @Override      public ArrayList<AstNode> getChildren() {          reverseChildren();            return children;      }        @Override      public void setAttribute(NodeKey key, Object value) {          if (key == NodeKey.TEXT) {              name = (String) value;          }          put(key, value);      }        @Override      public Object getAttribute(NodeKey key) {          return get(key);      }        @Override      public String toString() {          String info = "";          if (get(NodeKey.VALUE) != null) {              info += "Node Value is " + get(NodeKey.VALUE).toString();          }            if (get(NodeKey.TEXT) != null) {              info += "nNode Text is " + get(NodeKey.TEXT).toString();          }            if (get(NodeKey.SYMBOL) != null) {              info += "nNode Symbol is " + get(NodeKey.SYMBOL).toString();          }            return info + "n Node Type is " + type.toString();      }        @Override      public AstNode copy() {          AstNodeImpl copy = (AstNodeImpl) NodeFactory.createICodeNode(type);          Set<Entry<NodeKey, Object>> attributes = entrySet();          Iterator<Map.Entry<NodeKey, Object>> it = attributes.iterator();            while (it.hasNext()) {              Map.Entry<NodeKey, Object> attribute = it.next();              copy.put(attribute.getKey(), attribute.getValue());          }            return copy;      }  }

NodeFactory

NodeFactory就是简单的返回一个节点的实现

public class NodeFactory {      public static AstNode createICodeNode(Token type) {          return new AstNodeImpl(type);      }  }

构造AST

AST的创建也是需要在语法分析过程中根据reduce操作进行操作的。也就是在takeActionForReduce方法中调用AstBuilder的buildSyntaxTree方法

在AstBuilder里面还是需要两个堆栈来辅助操作

private Stack<AstNode> nodeStack = new Stack<>();    private LRStateTableParser parser = null;  private TypeSystem typeSystem = null;  private Stack<Object> valueStack = null;  private String functionName;  private HashMap<String, AstNode> funcMap = new HashMap<>();    private static AstBuilder instance;

构造AST的主要逻辑在buildSyntaxTree方法里,需要注意的是有一些节点在解释执行和代码生成的时候是不一样的,有时代码生成需要的节点解释执行的话并不需要

在这里提一下UNARY这个非终结符,这个非终结符和NAME很像,但是它一般是代表进行运算和一些操作的时候,比如数组,++,–或者函数调用的时候

其实构建AST的过程和符号表的构建过程有点儿类似,都是根据reduce操作来创建信息和组合信息,符号表是组合修饰符说明符等,而AST则是组合节点间的关系变成一棵树

我们只看几个操作

  • Specifiers_DeclList_Semi_TO_Def

    这个节点需要注意的是,从堆栈的什么地方拿到Symbol,这个需要从reduce次数和推导式中得出

* DEF -> SPECIFIERS  DECL_LIST SEMI  * DECL -> VAR_DECL  * VAR_DECL -> NEW_NAME  *             | VAR_DECL LP RP  *             | VAR_DECL LP VAR_LIST RP  *             | LP VAR_DECL RP  *             | START VAR_DECL 

从推导式可以看出,DEF节点的符号应该在valueStack.size() – 3,但是DECL和VAR_DECL没有做reduce操作,所以符号应该在valueStack.size() – 2。这其实和前面的符号表构建算出之前符号的位置是一样的。

  • TO_UNARY

这里则是变量、数字或者字符串的节点,如果是个变量的号,这个节点就需要一个Symbol的value了

case SyntaxProductionInit.Number_TO_Unary:  case SyntaxProductionInit.Name_TO_Unary:  case SyntaxProductionInit.String_TO_Unary:      node = NodeFactory.createICodeNode(Token.UNARY);      if (production == SyntaxProductionInit.Name_TO_Unary) {          assignSymbolToNode(node, text);      }        node.setAttribute(NodeKey.TEXT, text);      break;

其余的节点无非是把一些语句拆分它的逻辑然后组成节点,真正的求值部分像Name_TO_Unary比较少,更多是比如把一个if else块分成if节点、判断节点、else节点,之后再按照这棵树进行解释执行或者代码生成

public AstNode buildSyntaxTree(int production, String text) {      AstNode node = null;      Symbol symbol = null;      AstNode child = null;        if (Start.STARTTYPE == Start.INTERPRETER) {          int p1 = SyntaxProductionInit.Specifiers_DeclList_Semi_TO_Def;          int p2 = SyntaxProductionInit.Def_To_DefList;          int p3 = SyntaxProductionInit.DefList_Def_TO_DefList;            boolean isReturn = production == p1 || production == p2 || production == p3;          if (isReturn) {              return null;          }      }        switch (production) {          case SyntaxProductionInit.Specifiers_DeclList_Semi_TO_Def:              node = NodeFactory.createICodeNode(Token.DEF);              symbol = (Symbol) valueStack.get(valueStack.size() - 2);              node.setAttribute(NodeKey.SYMBOL, symbol);              break;          case SyntaxProductionInit.Def_To_DefList:              node = NodeFactory.createICodeNode(Token.DEF_LIST);              node.addChild(nodeStack.pop());              break;          case SyntaxProductionInit.DefList_Def_TO_DefList:              node = NodeFactory.createICodeNode(Token.DEF_LIST);              node.addChild(nodeStack.pop());              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.Number_TO_Unary:          case SyntaxProductionInit.Name_TO_Unary:          case SyntaxProductionInit.String_TO_Unary:              node = NodeFactory.createICodeNode(Token.UNARY);              if (production == SyntaxProductionInit.Name_TO_Unary) {                  assignSymbolToNode(node, text);              }                node.setAttribute(NodeKey.TEXT, text);              break;            case SyntaxProductionInit.Unary_LP_RP_TO_Unary:              node = NodeFactory.createICodeNode(Token.UNARY);              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.Unary_LP_ARGS_RP_TO_Unary:              node = NodeFactory.createICodeNode(Token.UNARY);              node.addChild(nodeStack.pop());              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.Unary_Incop_TO_Unary:          case SyntaxProductionInit.Unary_DecOp_TO_Unary:          case SyntaxProductionInit.LP_Expr_RP_TO_Unary:          case SyntaxProductionInit.Start_Unary_TO_Unary:              node = NodeFactory.createICodeNode(Token.UNARY);              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.Unary_LB_Expr_RB_TO_Unary:              node = NodeFactory.createICodeNode(Token.UNARY);              node.addChild(nodeStack.pop());              node.addChild(nodeStack.pop());                break;            case SyntaxProductionInit.Uanry_TO_Binary:              node = NodeFactory.createICodeNode(Token.BINARY);              child = nodeStack.pop();              node.setAttribute(NodeKey.TEXT, child.getAttribute(NodeKey.TEXT));              node.addChild(child);              break;            case SyntaxProductionInit.Binary_TO_NoCommaExpr:          case SyntaxProductionInit.NoCommaExpr_Equal_NoCommaExpr_TO_NoCommaExpr:              node = NodeFactory.createICodeNode(Token.NO_COMMA_EXPR);              child = nodeStack.pop();              String t = (String) child.getAttribute(NodeKey.TEXT);              node.addChild(child);              if (production == SyntaxProductionInit.NoCommaExpr_Equal_NoCommaExpr_TO_NoCommaExpr) {                  child = nodeStack.pop();                  t = (String) child.getAttribute(NodeKey.TEXT);                  node.addChild(child);              }              break;            case SyntaxProductionInit.Binary_Plus_Binary_TO_Binary:          case SyntaxProductionInit.Binary_DivOp_Binary_TO_Binary:          case SyntaxProductionInit.Binary_Minus_Binary_TO_Binary:          case SyntaxProductionInit.Binary_Start_Binary_TO_Binary:              node = NodeFactory.createICodeNode(Token.BINARY);              node.addChild(nodeStack.pop());              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.Binary_RelOP_Binary_TO_Binray:              node = NodeFactory.createICodeNode(Token.BINARY);              node.addChild(nodeStack.pop());                AstNode operator = NodeFactory.createICodeNode(Token.RELOP);              operator.setAttribute(NodeKey.TEXT, parser.getRelOperatorText());              node.addChild(operator);                node.addChild(nodeStack.pop());                break;            case SyntaxProductionInit.NoCommaExpr_TO_Expr:              node = NodeFactory.createICodeNode(Token.EXPR);              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.Expr_Semi_TO_Statement:          case SyntaxProductionInit.CompountStmt_TO_Statement:              node = NodeFactory.createICodeNode(Token.STATEMENT);              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.LocalDefs_TO_Statement:              node = NodeFactory.createICodeNode(Token.STATEMENT);              if (Start.STARTTYPE == Start.CODEGEN) {                  node.addChild(nodeStack.pop());              }              break;            case SyntaxProductionInit.Statement_TO_StmtList:              node = NodeFactory.createICodeNode(Token.STMT_LIST);              if (nodeStack.size() > 0) {                  node.addChild(nodeStack.pop());              }              break;            case SyntaxProductionInit.FOR_OptExpr_Test_EndOptExpr_Statement_TO_Statement:              node = NodeFactory.createICodeNode(Token.STATEMENT);              node.addChild(nodeStack.pop());              node.addChild(nodeStack.pop());              node.addChild(nodeStack.pop());              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.StmtList_Statement_TO_StmtList:              node = NodeFactory.createICodeNode(Token.STMT_LIST);              node.addChild(nodeStack.pop());              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.Expr_TO_Test:              node = NodeFactory.createICodeNode(Token.TEST);              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.If_Test_Statement_TO_IFStatement:              node = NodeFactory.createICodeNode(Token.IF_STATEMENT);              node.addChild(nodeStack.pop());              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.IfElseStatemnt_Else_Statemenet_TO_IfElseStatement:              node = NodeFactory.createICodeNode(Token.IF_ELSE_STATEMENT);              node.addChild(nodeStack.pop());              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.While_LP_Test_Rp_TO_Statement:          case SyntaxProductionInit.Do_Statement_While_Test_To_Statement:              node = NodeFactory.createICodeNode(Token.STATEMENT);              node.addChild(nodeStack.pop());              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.Expr_Semi_TO_OptExpr:          case SyntaxProductionInit.Semi_TO_OptExpr:              node = NodeFactory.createICodeNode(Token.OPT_EXPR);              if (production == SyntaxProductionInit.Expr_Semi_TO_OptExpr) {                  node.addChild(nodeStack.pop());              }              break;            case SyntaxProductionInit.Expr_TO_EndOpt:              node = NodeFactory.createICodeNode(Token.END_OPT_EXPR);              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.LocalDefs_StmtList_TO_CompoundStmt:              node = NodeFactory.createICodeNode(Token.COMPOUND_STMT);              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.NewName_LP_RP_TO_FunctDecl:          case SyntaxProductionInit.NewName_LP_VarList_RP_TO_FunctDecl:              node = NodeFactory.createICodeNode(Token.FUNCT_DECL);              node.addChild(nodeStack.pop());              child = node.getChildren().get(0);              functionName = (String) child.getAttribute(NodeKey.TEXT);              symbol = assignSymbolToNode(node, functionName);                break;            case SyntaxProductionInit.NewName_TO_VarDecl:              nodeStack.pop();              break;            case SyntaxProductionInit.NAME_TO_NewName:              node = NodeFactory.createICodeNode(Token.NEW_NAME);              node.setAttribute(NodeKey.TEXT, text);              break;            case SyntaxProductionInit.OptSpecifiers_FunctDecl_CompoundStmt_TO_ExtDef:              node = NodeFactory.createICodeNode(Token.EXT_DEF);              node.addChild(nodeStack.pop());              node.addChild(nodeStack.pop());              funcMap.put(functionName, node);              break;            case SyntaxProductionInit.NoCommaExpr_TO_Args:              node = NodeFactory.createICodeNode(Token.ARGS);              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.NoCommaExpr_Comma_Args_TO_Args:              node = NodeFactory.createICodeNode(Token.ARGS);              node.addChild(nodeStack.pop());              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.Return_Semi_TO_Statement:              node = NodeFactory.createICodeNode(Token.STATEMENT);              break;          case SyntaxProductionInit.Return_Expr_Semi_TO_Statement:              node = NodeFactory.createICodeNode(Token.STATEMENT);              node.addChild(nodeStack.pop());              break;            case SyntaxProductionInit.Unary_StructOP_Name_TO_Unary:              node = NodeFactory.createICodeNode(Token.UNARY);              node.addChild(nodeStack.pop());              node.setAttribute(NodeKey.TEXT, text);              break;            default:              break;      }        if (node != null) {          node.setAttribute(NodeKey.PRODUCTION, production);          nodeStack.push(node);      }        return node;  }

小结

其实构造AST和创建符号表上非常相似,都是依据reduce操作的信息来完成。在AST的构建中的主要任务就是对源代码语句里的逻辑进行分块,比如对于一个ifelse语句:

上面的图是我依据这个意思话的,和上面构造出来的AST不完全一致

另外我的github博客:https://dejavudwh.cn/