使用深度学习算法 DQN 来玩 flappy bird 无敌了!
//www.bilibili.com/video/BV1xf4y1174A/
使用深度学习算法 DQN 来玩 flappy bird
安装依赖
pip install parl == 1.3.1
pip install pygame
pip install paddlepaddle
模拟环境 PLE 库
(PyGame-Learning-Environment)[//github.com/ntasfi/PyGame-Learning-Environment]
模型简介
使用了 百度 PARL 深度学习库直接调用 DQN 算法
由于游戏的 state 仅有 8 维,所以模型网络仅使用了 2 个全连接层
收敛情况
在训练了 1000 个 episode 以后可以明显看出在逐步收敛
在训练了 10000 个 episode 以后,测试中基本可以保持一直进行下去,所以不得不限制到达一定分数就终止游戏
参数调整心得
需要保持较高的探索概率,30%-20%较佳
import parl
from parl import layers
import paddle.fluid as fluid
from parl.utils import logger
from parl.algorithms import DQN
from ple.games.flappybird import FlappyBird
from ple import PLE
from pygame.constants import K_w
import random
import collections
import numpy as np
actions = {"up": K_w}
#LEARN_FREQ = 5 # 训练频率,不需要每一个step都learn,攒一些新增经验后再learn,提高效率
LEARN_FREQ = 5
#MEMORY_SIZE = 20000 # replay memory的大小,越大越占用内存
MEMORY_SIZE = 20000
#MEMORY_WARMUP_SIZE = 200 # replay_memory 里需要预存一些经验数据,再从里面sample一个batch的经验让agent去learn
MEMORY_WARMUP_SIZE = 200
#BATCH_SIZE = 32 # 每次给agent learn的数据数量,从replay memory随机里sample一批数据出来
BATCH_SIZE = 32
#GAMMA = 0.99 # reward 的衰减因子,一般取 0.9 到 0.999 不等
GAMMA = 0.999
LEARNING_RATE = 0.0001 # 学习率
class Model(parl.Model):
def __init__(self, act_dim):
hid1_size = 128
hid2_size = 128
self.fc1 = layers.fc(size=hid1_size, act='tanh')
self.fc2 = layers.fc(size=hid2_size, act='tanh')
self.fc3 = layers.fc(size=act_dim, act=None)
def value(self, obs):
# 定义网络
# 输入state,输出所有action对应的Q,[Q(s,a1), Q(s,a2)]
h1 = self.fc1(obs)
h2 = self.fc2(h1)
Q = self.fc3(h2)
return Q
class Agent(parl.Agent):
def __init__(self,
algorithm,
obs_dim,
act_dim,
e_greed=0.1,
e_greed_decrement=0):
assert isinstance(obs_dim, int)
assert isinstance(act_dim, int)
self.obs_dim = obs_dim
self.act_dim = act_dim
super(Agent, self).__init__(algorithm)
self.global_step = 0
#self.update_target_steps = 200 # 每隔200个training steps再把model的参数复制到target_model中
self.update_target_steps = 200
self.e_greed = e_greed # 有一定概率随机选取动作,探索
self.e_greed_decrement = e_greed_decrement # 随着训练逐步收敛,探索的程度慢慢降低
def build_program(self):
self.pred_program = fluid.Program()
self.learn_program = fluid.Program()
with fluid.program_guard(self.pred_program): # 搭建计算图用于 预测动作,定义输入输出变量
obs = layers.data(
name='obs', shape=[self.obs_dim], dtype='float32')
self.value = self.alg.predict(obs)
with fluid.program_guard(self.learn_program): # 搭建计算图用于 更新Q网络,定义输入输出变量
obs = layers.data(
name='obs', shape=[self.obs_dim], dtype='float32')
action = layers.data(name='act', shape=[1], dtype='int32')
reward = layers.data(name='reward', shape=[], dtype='float32')
next_obs = layers.data(
name='next_obs', shape=[self.obs_dim], dtype='float32')
terminal = layers.data(name='terminal', shape=[], dtype='bool')
self.cost = self.alg.learn(obs, action, reward, next_obs, terminal)
def sample(self, obs):
sample = np.random.rand() # 产生0~1之间的小数
if sample < self.e_greed:
act = np.random.randint(self.act_dim) # 探索:每个动作都有概率被选择
else:
act = self.predict(obs) # 选择最优动作
self.e_greed = max(
0.1, self.e_greed - self.e_greed_decrement) # 随着训练逐步收敛,探索的程度慢慢降低
#self.e_greed = 0.2
return act
def predict(self, obs): # 选择最优动作
obs = np.expand_dims(obs, axis=0)
pred_Q = self.fluid_executor.run(
self.pred_program,
feed={'obs': obs.astype('float32')},
fetch_list=[self.value])[0]
pred_Q = np.squeeze(pred_Q, axis=0)
act = np.argmax(pred_Q) # 选择Q最大的下标,即对应的动作
return act
def learn(self, obs, act, reward, next_obs, terminal):
# 每隔200个training steps同步一次model和target_model的参数
if self.global_step % self.update_target_steps == 0:
self.alg.sync_target()
self.global_step += 1
act = np.expand_dims(act, -1)
feed = {
'obs': obs.astype('float32'),
'act': act.astype('int32'),
'reward': reward,
'next_obs': next_obs.astype('float32'),
'terminal': terminal
}
cost = self.fluid_executor.run(
self.learn_program, feed=feed, fetch_list=[self.cost])[0] # 训练一次网络
return cost
# replay_memory.py
class ReplayMemory(object):
def __init__(self, max_size):
self.buffer = collections.deque(maxlen=max_size)
# 增加一条经验到经验池中
def append(self, exp):
self.buffer.append(exp)
# 从经验池中选取N条经验出来
def sample(self, batch_size):
mini_batch = random.sample(self.buffer, batch_size)
obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], []
for experience in mini_batch:
s, a, r, s_p, done = experience
obs_batch.append(s)
action_batch.append(a)
reward_batch.append(r)
next_obs_batch.append(s_p)
done_batch.append(done)
return np.array(obs_batch).astype('float32'), \
np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'),\
np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32')
def __len__(self):
return len(self.buffer)
# 训练一个episode
def run_episode(env, agent, rpm):
total_reward = 0
env.init()
step = 0
while True:
# 第一帧为黑屏,不操作
if (step == 0):
reward = env.act(None)
done = False
else:
obs = list(env.getGameState().values())
action = agent.sample(obs) # 采样动作,所有动作都有概率被尝试到
# 神经网络输出转化为实际动作
if action == 1:
act = actions["up"]
else:
act = None
reward = env.act(act)
done = env.game_over()
next_obs = list(env.getGameState().values())
rpm.append((obs, action, reward, next_obs, done))
# train model
if (len(rpm) > MEMORY_WARMUP_SIZE) and (step % LEARN_FREQ == 0):
(batch_obs, batch_action, batch_reward, batch_next_obs,
batch_done) = rpm.sample(BATCH_SIZE)
train_loss = agent.learn(batch_obs, batch_action, batch_reward,
batch_next_obs,
batch_done) # s,a,r,s',done
total_reward += reward
if done:
print(step)
env.reset_game() # 重置游戏
break
step += 1
return total_reward
# 评估 agent, 跑 5 个episode,总reward求平均
def evaluate(env, agent):
eval_reward = []
for i in range(5):
env.init()
episode_reward = 0
step = 0
while True:
# 第一帧为黑屏,不操作
if (step == 0):
reward = env.act(None)
done = False
else:
obs = list(env.getGameState().values())
action = agent.predict(obs) # 预测动作,只选最优动作
# 神经网络输出转化为实际动作
if action == 1:
act = actions["up"]
else:
act = None
reward = env.act(act)
done = env.game_over()
episode_reward += reward
if (step == 5000):
print(step)
break
if done:
print(step)
env.reset_game() # 重置游戏
break
step += 1
eval_reward.append(episode_reward)
return np.mean(eval_reward)
# 创建环境
game = FlappyBird()
env_1 = PLE(game, fps=30, display_screen=False)
env_2 = PLE(game, fps=30, display_screen=False)
obs_dim = len(env_1.getGameState())
act_dim = 2
logger.info('obs_dim {}, act_dim {}'.format(obs_dim, act_dim))
# 创建经验池
rpm = ReplayMemory(MEMORY_SIZE) # DQN的经验回放池
# 根据parl框架构建agent
model = Model(act_dim=act_dim)
algorithm = DQN(model, act_dim = act_dim, gamma=GAMMA, lr=LEARNING_RATE)
agent = Agent(
algorithm,
obs_dim = obs_dim,
act_dim = act_dim,
e_greed = 0.2,
e_greed_decrement = 1e-6
)
# 加载模型
save_path = 'bird_dqn_v3_7.ckpt'
agent.restore(save_path)
# 先往经验池里存一些数据,避免最开始训练的时候样本丰富度不够
while len(rpm) < MEMORY_WARMUP_SIZE:
run_episode(env_1, agent, rpm)
max_episode = 2000
# 开始训练
episode = 0
while episode < max_episode: # 训练max_episode个回合,test部分不计算入episode数量
# train part
for i in range(0, 100):
total_reward = run_episode(env_1, agent, rpm)
episode += 1
# test part
eval_reward = evaluate(env_2, agent) # render=True 查看显示效果
logger.info('episode:{} e_greed:{} test_reward:{}'.format(
episode, agent.e_greed, eval_reward))
# 保存模型
ckpt = 'bird_dqn_v3_dir/steps_{}.ckpt'.format(episode)
agent.save(ckpt)
# 训练结束,保存模型
save_path = './bird_dqn_v3_8.ckpt'
agent.save(save_path)