ubuntu16.04部署GPU环境

  • 2019 年 10 月 11 日
  • 筆記

参考文档

https://blog.csdn.net/nwpushuai/article/details/79935740 https://blog.csdn.net/qq_43030766/article/details/91513501 https://blog.csdn.net/zhqh100/article/details/77646497 https://www.cnblogs.com/zixuan-L/p/11023051.html https://blog.csdn.net/huangfei711/article/details/79230446 https://www.cnblogs.com/yjlch1016/p/8641910.html

硬件环境

CPU   I7-7700,8M,3.6GHZ,4核  内存  DDR4  16G  硬盘  SSD 500G  系统  Ubuntu 16.04 Desktop版(需要用到图像界面)  显卡  NVDIA  GeForce GTX1050Ti  4G

系统环境

1.双网卡绑定

root@mec03:~# cat /etc/modules  # /etc/modules: kernel modules to load at boot time.  #  # This file contains the names of kernel modules that should be loaded  # at boot time, one per line. Lines beginning with "#" are ignored.  bonding mode=0 miimon=100    root@mec03:/etc/network# cat /etc/network/interfaces  auto bond0  iface bond0 inet static  address 172.30.10.249  netmask 255.255.255.0  gateway 172.30.10.254  post-up ifenslave bond0 enp2s0 enp3s0  pre-down ifenslave -d bond0 enp2s0 enp3s0  开机启动放在rc.local里面  root@mec03:/etc/network# modprobe bonding  关闭网卡管理会与bonding冲突  root@mec03:/etc/network# systemctl disable network-manager.service

2.设置apt-list源

root@mec03:~# cat /etc/apt/sources.list  deb http://mirrors.163.com/ubuntu/ xenial main restricted universe multiverse  deb http://mirrors.163.com/ubuntu/ xenial-security main restricted universe multiverse  deb http://mirrors.163.com/ubuntu/ xenial-updates main restricted universe multiverse  deb http://mirrors.163.com/ubuntu/ xenial-proposed main restricted universe multiverse  deb http://mirrors.163.com/ubuntu/ xenial-backports main restricted universe multiverse  deb-src http://mirrors.163.com/ubuntu/ xenial main restricted universe multiverse  deb-src http://mirrors.163.com/ubuntu/ xenial-security main restricted universe multiverse  deb-src http://mirrors.163.com/ubuntu/ xenial-updates main restricted universe multiverse  deb-src http://mirrors.163.com/ubuntu/ xenial-proposed main restricted universe multiverse  deb-src http://mirrors.163.com/ubuntu/ xenial-backports main restricted universe multiverse

3.默认语言设置

root@mec03:~# cat /etc/default/locale  #  File generated by update-locale  # LANG="zh_CN.UTF-8"  # LANGUAGE="zh_CN:zh"  LANG="en_US.UTF-8"  LANGUAGE="en_US:en"

二、安装Nvidia GTX 1050TI驱动

1.禁用系统默认自带nvidia驱动

root@mec03:~# lsmod | grep nouveau  nouveau              1724416  1  mxm_wmi                16384  1 nouveau  wmi                    24576  2 mxm_wmi,nouveau  i2c_algo_bit           16384  1 nouveau  ttm                   106496  1 nouveau  drm_kms_helper        172032  1 nouveau  drm                   401408  4 drm_kms_helper,ttm,nouveau  video                  45056  1 nouveau

2.禁用模块

root@mec03:~# vim /etc/modprobe.d/blacklist.conf  在文件末尾添加如下几行:  blacklist vga16fb  blacklist nouveau  blacklist rivafb  blacklist rivatv  blacklist nvidiafb

3.更新内核

root@mec03:~#  update-initramfs -u  update-initramfs: Generating /boot/initrd.img-4.15.0-45-generic

4.重启

root@mec03:~#  reboot

5.上传cudnn_cudn.zip包

root@mec03:~#  rz  root@mec03:~# ls  cudnn_cuda  cudnn_cuda.zip  root@mec03:~# cd cudnn_cuda/  root@mec03:~/cudnn_cuda# ls  cuda_10.0.130.1_linux.run                libcudnn7-dev_7.6.3.30-1+cuda10.0_amd64.deb  cuda_10.0.130_410.48_linux.run           libcudnn7-doc_7.6.3.30-1+cuda10.0_amd64.deb  libcudnn7_7.6.3.30-1+cuda10.0_amd64.deb  NVIDIA-Linux-x86_64-435.21.run

6.安装驱动

root@mec03:~/cudnn_cuda# systemctl stop lightdm.service  root@mec03:~/cudnn_cuda# sh NVIDIA-Linux-x86_64-435.21.run  Verifying archive integrity... OK  Uncompressing NVIDIA Accelerated Graphics Driver for Linux-x86_64 435.21........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................    root@mec03:~/cudnn_cuda# lsmod | grep nvi  nvidia_drm             45056  0  nvidia_modeset       1118208  1 nvidia_drm  nvidia              19472384  1 nvidia_modeset  drm_kms_helper        172032  1 nvidia_drm  drm                   401408  3 drm_kms_helper,nvidia_drm  ipmi_msghandler        53248  2 ipmi_devintf,nvidia

三.安装cuda 10.1

root@mec03:~/cudnn_cuda# sh cuda_10.0.130_410.48_linux.run    Do you accept the previously read EULA?  accept/decline/quit: accept    Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 410.48?  (y)es/(n)o/(q)uit: n    Install the CUDA 10.0 Toolkit?  (y)es/(n)o/(q)uit: y    Enter Toolkit Location   [ default is /usr/local/cuda-10.0 ]:    Do you want to install a symbolic link at /usr/local/cuda?  (y)es/(n)o/(q)uit: y    Install the CUDA 10.0 Samples?  (y)es/(n)o/(q)uit: y    Enter CUDA Samples Location   [ default is /root ]:    Installing the CUDA Toolkit in /usr/local/cuda-10.0 ...    Installing the CUDA Toolkit in /usr/local/cuda-10.0 ...  Missing recommended library: libGLU.so  Missing recommended library: libX11.so  Missing recommended library: libXi.so  Missing recommended library: libXmu.so    Installing the CUDA Samples in /root ...  Copying samples to /root/NVIDIA_CUDA-10.0_Samples now...  Finished copying samples.    ===========  = Summary =  ===========    Driver:   Not Selected  Toolkit:  Installed in /usr/local/cuda-10.0  Samples:  Installed in /root, but missing recommended libraries    Please make sure that   -   PATH includes /usr/local/cuda-10.0/bin   -   LD_LIBRARY_PATH includes /usr/local/cuda-10.0/lib64, or, add /usr/local/cuda-10.0/lib64 to /etc/ld.so.conf and run ldconfig as root    To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-10.0/bin    Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-10.0/doc/pdf for detailed information on setting up CUDA.    ***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 10.0 functionality to work.  To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:      sudo <CudaInstaller>.run -silent -driver    Logfile is /tmp/cuda_install_9752.log      root@mec03:~/cudnn_cuda# vim /etc/ld.so.conf  root@mec03:~/cudnn_cuda# ldconfig    root@mec03:~# cat /etc/profile  export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}  export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}  export CUDA_HOME=/usr/local/cuda    root@mec03:~# nvcc --version  nvcc: NVIDIA (R) Cuda compiler driver  Copyright (c) 2005-2018 NVIDIA Corporation  Built on Sat_Aug_25_21:08:01_CDT_2018  Cuda compilation tools, release 10.0, V10.0.130

四.安装cuDNN 7.6

root@mec03:~/cudnn_cuda# dpkg -i libcudnn7_7.6.3.30-1+cuda10.0_amd64.deb  Selecting previously unselected package libcudnn7.  (Reading database ... 184057 files and directories currently installed.)  Preparing to unpack libcudnn7_7.6.3.30-1+cuda10.0_amd64.deb ...  Unpacking libcudnn7 (7.6.3.30-1+cuda10.0) ...  Setting up libcudnn7 (7.6.3.30-1+cuda10.0) ...  Processing triggers for libc-bin (2.23-0ubuntu11) ...  root@mec03:~/cudnn_cuda# dpkg -i libcudnn7-dev_7.6.3.30-1+cuda10.0_amd64.deb  Selecting previously unselected package libcudnn7-dev.  (Reading database ... 184063 files and directories currently installed.)  Preparing to unpack libcudnn7-dev_7.6.3.30-1+cuda10.0_amd64.deb ...  Unpacking libcudnn7-dev (7.6.3.30-1+cuda10.0) ...  Setting up libcudnn7-dev (7.6.3.30-1+cuda10.0) ...  update-alternatives: using /usr/include/x86_64-linux-gnu/cudnn_v7.h to provide /usr/include/cudnn.h (libcudnn) in auto mode  root@mec03:~/cudnn_cuda# dpkg -i libcudnn7-doc_7.6.3.30-1+cuda10.0_amd64.deb  Selecting previously unselected package libcudnn7-doc.  (Reading database ... 184069 files and directories currently installed.)  Preparing to unpack libcudnn7-doc_7.6.3.30-1+cuda10.0_amd64.deb ...  Unpacking libcudnn7-doc (7.6.3.30-1+cuda10.0) ...  Setting up libcudnn7-doc (7.6.3.30-1+cuda10.0) ...    root@mec03:~/cudnn_cuda#  cp /usr/include/cudnn.h /usr/local/cuda/include    root@mec03:~/cudnn_cuda# cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2  #define CUDNN_MAJOR 7  #define CUDNN_MINOR 6  #define CUDNN_PATCHLEVEL 3  --  #define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)    #include "driver_types.h"

测试GPU效果

1.安装python3.6

root@mec03:~#  add-apt-repository ppa:jonathonf/python-3.6   A plain backport of *just* Python 3.6. System extensions/Python libraries may or may not work.    Don't remove Python 3.5 from your system - it will break.   More info: https://launchpad.net/~jonathonf/+archive/ubuntu/python-3.6  Press [ENTER] to continue or ctrl-c to cancel adding it    gpg: keyring `/tmp/tmpec5st1dk/secring.gpg' created  gpg: keyring `/tmp/tmpec5st1dk/pubring.gpg' created  gpg: requesting key F06FC659 from hkp server keyserver.ubuntu.com  gpg: /tmp/tmpec5st1dk/trustdb.gpg: trustdb created  gpg: key F06FC659: public key "Launchpad PPA for J Fernyhough" imported  gpg: Total number processed: 1  gpg:               imported: 1  (RSA: 1)  OK    root@mec03:~#  update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.5 1  update-alternatives: using /usr/bin/python3.5 to provide /usr/bin/python3 (python3) in auto mode  root@mec03:~# update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.6 2  update-alternatives: using /usr/bin/python3.6 to provide /usr/bin/python3 (python3) in auto mode  root@mec03:~# update-alternatives --install /usr/bin/python python /usr/bin/python2 100  update-alternatives: using /usr/bin/python2 to provide /usr/bin/python (python) in auto mode  root@mec03:~# update-alternatives --install /usr/bin/python python /usr/bin/python3 150  update-alternatives: using /usr/bin/python3 to provide /usr/bin/python (python) in auto mode  root@mec03:~# python3  Python 3.6.8 (default, May  7 2019, 14:58:50)  [GCC 5.4.0 20160609] on linux  Type "help", "copyright", "credits" or "license" for more information.  >>> 

2.安装pip3

root@mec03:~# apt install  python3-pip

3.安装tensorflow

root@mec03:~# pip3 install tensorflow-gpu==1.13.1 -i https://pypi.tuna.tsinghua.edu.cn/simple  Collecting tensorflow-gpu==1.13.1

4.测试gpu 测试python语句

import numpy import tensorflow as tf a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) print(sess.run(c))

root@mec03:~# python3  Python 3.6.8 (default, May  7 2019, 14:58:50)  [GCC 5.4.0 20160609] on linux  Type "help", "copyright", "credits" or "license" for more information.  >>> import numpy  ement=True))  print(sess.run(c))>>> import tensorflow as tf  /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:526: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.    _np_qint8 = np.dtype([("qint8", np.int8, 1)])  /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:527: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.    _np_quint8 = np.dtype([("quint8", np.uint8, 1)])  /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:528: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.    _np_qint16 = np.dtype([("qint16", np.int16, 1)])  /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:529: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.    _np_quint16 = np.dtype([("quint16", np.uint16, 1)])  /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:530: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.    _np_qint32 = np.dtype([("qint32", np.int32, 1)])  /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:535: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.    np_resource = np.dtype([("resource", np.ubyte, 1)])  >>> a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')  >>> b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')  >>> c = tf.matmul(a, b)  >>> sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))  2019-09-14 12:27:18.309361: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA  2019-09-14 12:27:18.360212: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero  2019-09-14 12:27:18.360498: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x3bb3a20 executing computations on platform CUDA. Devices:  2019-09-14 12:27:18.360512: I tensorflow/compiler/xla/service/service.cc:158]   StreamExecutor device (0): GeForce GTX 1050 Ti, Compute Capability 6.1  2019-09-14 12:27:18.379184: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3600000000 Hz  2019-09-14 12:27:18.380446: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x3ccb2f0 executing computations on platform Host. Devices:  2019-09-14 12:27:18.380503: I tensorflow/compiler/xla/service/service.cc:158]   StreamExecutor device (0): <undefined>, <undefined>  2019-09-14 12:27:18.380792: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:  name: GeForce GTX 1050 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.392  pciBusID: 0000:01:00.0  totalMemory: 3.94GiB freeMemory: 3.66GiB  2019-09-14 12:27:18.380852: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0  2019-09-14 12:27:18.382037: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:  2019-09-14 12:27:18.382075: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990]      0  2019-09-14 12:27:18.382090: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0:   N  2019-09-14 12:27:18.382242: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 3452 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)  Device mapping:  /job:localhost/replica:0/task:0/device:XLA_GPU:0 -> device: XLA_GPU device  /job:localhost/replica:0/task:0/device:XLA_CPU:0 -> device: XLA_CPU device  /job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1  2019-09-14 12:27:18.384493: I tensorflow/core/common_runtime/direct_session.cc:317] Device mapping:  /job:localhost/replica:0/task:0/device:XLA_GPU:0 -> device: XLA_GPU device  /job:localhost/replica:0/task:0/device:XLA_CPU:0 -> device: XLA_CPU device  /job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1    >>> print(sess.run(c))  MatMul: (MatMul): /job:localhost/replica:0/task:0/device:GPU:0  2019-09-14 12:27:20.118473: I tensorflow/core/common_runtime/placer.cc:1059] MatMul: (MatMul)/job:localhost/replica:0/task:0/device:GPU:0  a: (Const): /job:localhost/replica:0/task:0/device:GPU:0  2019-09-14 12:27:20.118492: I tensorflow/core/common_runtime/placer.cc:1059] a: (Const)/job:localhost/replica:0/task:0/device:GPU:0  b: (Const): /job:localhost/replica:0/task:0/device:GPU:0  2019-09-14 12:27:20.118502: I tensorflow/core/common_runtime/placer.cc:1059] b: (Const)/job:localhost/replica:0/task:0/device:GPU:0  [[22. 28.]   [49. 64.]]  >>> 

5.查看GPU使用情况

root@mec03:~# nvidia-smi  Fri Sep  6 19:42:42 2019  +-----------------------------------------------------------------------------+  | Processes:                                                       GPU Memory |  |  GPU       PID   Type   Process name                             Usage      |  |=============================================================================|  |    0      9558      C   python3                                     3865MiB |  |    0     12510      G   /usr/lib/xorg/Xorg                            39MiB |  |    0     12608      G   gnome-shell                                   38MiB |  +-----------------------------------------------------------------------------+  Fri Sep  6 00:22:27 2019  +-----------------------------------------------------------------------------+  | NVIDIA-SMI 435.21       Driver Version: 435.21       CUDA Version: 10.1     |  |-------------------------------+----------------------+----------------------+  | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |  | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |  |===============================+======================+======================|  |   0  GeForce GTX 105...  Off  | 00000000:01:00.0  On |                  N/A |  | 31%   62C    P0    N/A /  80W |   3955MiB /  4038MiB |     97%      Default |  +-------------------------------+----------------------+----------------------+    +-----------------------------------------------------------------------------+  | Processes:                                                       GPU Memory |  |  GPU       PID   Type   Process name                             Usage      |  |=============================================================================|  |    0      9558      C   python3                                     3865MiB |  |    0     12510      G   /usr/lib/xorg/Xorg                            39MiB |  |    0     12608      G   gnome-shell                                   38MiB |  +-----------------------------------------------------------------------------+