­

《西虹市首富》文章相关代码分享

  • 2019 年 10 月 8 日
  • 筆記
之前也得到了一些读者的反馈,有些城市的经纬度在pyechart包中无法找到,此次我们已经将这部分数据剔除,感谢大家与我们的互动。

本文详细代码如下:

"""  Created on Sun Jul 29 09:35:03 2018    @author: dell  """  ## 调用要使用的包  import json  import random  import requests  import time  import pandas as pd  import os  from pyecharts import Bar,Geo,Line,Overlap  import jieba  from scipy.misc import imread  # 这是一个处理图像的函数  from wordcloud import WordCloud, ImageColorGenerator  import matplotlib.pyplot as plt  from collections import Counter  os.chdir('D:/爬虫/西红柿')    ## 设置headers和cookie  header = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win32; x32; rv:54.0) Gecko/20100101 Firefox/54.0',  'Connection': 'keep-alive'}  cookies ='v=3; iuuid=1A6E888B4A4B29B16FBA1299108DBE9CDCB327A9713C232B36E4DB4FF222CF03; webp=true; ci=1%2C%E5%8C%97%E4%BA%AC; __guid=26581345.3954606544145667000.1530879049181.8303; _lxsdk_cuid=1646f808301c8-0a4e19f5421593-5d4e211f-100200-1646f808302c8; _lxsdk=1A6E888B4A4B29B16FBA1299108DBE9CDCB327A9713C232B36E4DB4FF222CF03; monitor_count=1; _lxsdk_s=16472ee89ec-de2-f91-ed0%7C%7C5; __mta=189118996.1530879050545.1530936763555.1530937843742.18'  cookie = {}  for line in cookies.split(';'):      name, value = cookies.strip().split('=', 1)      cookie[name] = value    ## 爬取数据,每次理论上可以爬取1.5W调数据,存在大量重复数据,需要多次执行,最后统一去重  tomato = pd.DataFrame(columns=['date','score','city','comment','nick'])  for i in range(0, 1000):      j = random.randint(1,1000)      print(str(i)+' '+str(j))      try:          time.sleep(2)          url= 'http://m.maoyan.com/mmdb/comments/movie/1212592.json?_v_=yes&offset=' + str(j)          html = requests.get(url=url, cookies=cookie, headers=header).content          data = json.loads(html.decode('utf-8'))['cmts']          for item in data:              tomato = tomato.append({'date':item['time'].split(' ')[0],'city':item['cityName'],                                      'score':item['score'],'comment':item['content'],                                      'nick':item['nick']},ignore_index=True)            tomato.to_excel('西虹市首富.xlsx',index=False)      except:          continue    ## 可以直接读取我们已经爬到的数据进行分析  tomato_com = pd.read_excel('西虹市首富.xlsx')  grouped = tomato_com.groupby(['city'])  grouped_pct = grouped['score']    ## 全国热力图  city_com = grouped_pct.agg(['mean','count'])  city_com.reset_index(inplace=True)  city_com['mean'] = round(city_com['mean'],2)  data=[(city_com['city'][i],city_com['count'][i]) for i in range(0,city_com.shape[0])]  geo = Geo('《西虹市首富》全国热力图', title_color="#fff",            title_pos="center", width=1200,height=600, background_color='#404a59')  attr, value = geo.cast(data)  geo.add("", attr, value, type="heatmap", visual_range=[0, 200],          visual_text_color="#fff", symbol_size=10, is_visualmap=True,          is_roam=False)  geo.render('西虹市首富全国热力图.html')    ## 主要城市评论数与评分  city_main = city_com.sort_values('count',ascending=False)[0:20]  attr = city_main['city']  v1=city_main['count']  v2=city_main['mean']  line = Line("主要城市评分")  line.add("城市", attr, v2, is_stack=True,xaxis_rotate=30,yaxis_min=4.2,           mark_point=['min','max'],xaxis_interval=0,line_color='lightblue',           line_width=4,mark_point_textcolor='black',mark_point_color='lightblue',           is_splitline_show=False)    bar = Bar("主要城市评论数")  bar.add("城市", attr, v1, is_stack=True,xaxis_rotate=30,yaxis_min=4.2,           xaxis_interval =0,is_splitline_show=False)  overlap = Overlap()  # 默认不新增 x y 轴,并且 x y 轴的索引都为 0  overlap.add(bar)  overlap.add(line, yaxis_index=1, is_add_yaxis=True)  overlap.render('主要城市评论数_平均分.html')      ## 主要城市评分降序  city_score = city_main.sort_values('mean',ascending=False)[0:20]  attr = city_score['city']  v1=city_score['mean']  line = Line("主要城市评分")  line.add("城市", attr, v1, is_stack=True,xaxis_rotate=30,yaxis_min=4.2,           mark_point=['min','max'],xaxis_interval=0,line_color='lightblue',           line_width=4,mark_point_textcolor='black',mark_point_color='lightblue',           is_splitline_show=False)  line.render('主要城市评分.html')    ## 主要城市评分全国分布  city_score_area = city_com.sort_values('count',ascending=False)[0:30]  city_score_area.reset_index(inplace=True)  data=[(city_score_area['city'][i],city_score_area['mean'][i]) for i in range(0,        city_score_area.shape[0])]  geo = Geo('《西虹市首富》全国主要城市打分图', title_color="#fff",            title_pos="center", width=1200,height=600, background_color='#404a59')  attr, value = geo.cast(data)  geo.add("", attr, value, visual_range=[4.4, 4.8],          visual_text_color="#fff", symbol_size=15, is_visualmap=True,          is_roam=False)  geo.render('西虹市首富全国主要城市打分图.html')    ## 前三天票房对比  piaofang = pd.read_excel('票房.xlsx')  attr1 = piaofang[piaofang['film']=='西虹市首富']['day']  v1= piaofang[piaofang['film']=='西虹市首富']['money']  attr2 = piaofang[piaofang['film']=='羞羞的铁拳']['day']  v2= piaofang[piaofang['film']=='羞羞的铁拳']['money']  line = Line("前三天票房对比")  line.add("西红柿首富", attr1, v1, is_stack=True)  line.add("羞羞的铁拳", attr2, v2, is_stack=True)  line.render('前三天票房对比.html')    ## 绘制词云  tomato_str =  ' '.join(tomato_com['comment'])  words_list = []  word_generator = jieba.cut_for_search(tomato_str)  for word in word_generator:      words_list.append(word)  words_list = [k for k in words_list if len(k)>1]  back_color = imread('西红柿.jpg')  # 解析该图片  wc = WordCloud(background_color='white',  # 背景颜色                 max_words=200,  # 最大词数                 mask=back_color,  # 以该参数值作图绘制词云,这个参数不为空时,width和height会被忽略                 max_font_size=300,  # 显示字体的最大值                 font_path="C:/Windows/Fonts/STFANGSO.ttf",  # 解决显示口字型乱码问题,可进入C:/Windows/Fonts/目录更换字体                 random_state=42,  # 为每个词返回一个PIL颜色                 )  tomato_count = Counter(words_list)  wc.generate_from_frequencies(tomato_count)  # 基于彩色图像生成相应彩色  image_colors = ImageColorGenerator(back_color)  # 绘制结果  plt.figure()  plt.imshow(wc.recolor(color_func=image_colors))  plt.axis('off')

如果大家从这里直接复制代码不太方便,请关注“数据森麟”公众号,在公众号后台直接回复“西红柿”或者“西虹市”,会有详细的代码和数据、包括图片地址。也欢迎大家留言,分享你对《西虹市首富》电影或者我们文章的看法。


如果大家周围有对数据分析&数据挖掘感兴趣的朋友,欢迎在朋友圈分享&转发我们的公众号,让更多的朋友加入数据森麟。有好的文章也可以联系我与大家分享,需要获取代码转载本公众号文章,可以直接在公众号或者文章下方留言