JDK容器类Map源码解读

  • 2019 年 10 月 7 日
  • 筆記

java.util.Map接口是JDK1.2开始提供的一个基于键值对的散列表接口,其设计的初衷是为了替换JDK1.0中的java.util.Dictionary抽象类。Dictionary是JDK最初的键值对类,它不可以存储null作为key和value,目前这个类早已不被使用了。目前都是在使用Map接口,它是可以存储null值作为key和value,但Map的key是不可以重复的。其常用的实现类主要有HashMap,TreeMap,ConcurrentHashMap等

HashMap源码解读

目前JDK已经发布到JDK12,主流的JDK版本是JDK8, 但是如果阅读HashMap的源码建议先看JDK7的源码。JDK7和JDK8的源码中HashMap的实现原理大体相同,只不过是在JDK8中做了部分优化。但是JDK8的源码可读性非常差。

HashMap 是一个存储键值对(key-value)映射的散列表,继承于AbstractMap,实现了Map、Cloneable、java.io.Serializable接口,HashMap是线程不安全的,它存储的映射也是无序的。 HashMap的底层主要是基于数组和链表来实现的(JDK8之后又引入了红黑树),数据存储时会通过对key进行哈希操作取到哈希值,然后将哈希值对数组长度取模,得到的值就是该键值对在数组中的索引index值,如果数组该位置没有值则直接将该键值对放在该位置,如果该位置已经有值则将其插入相应链表的位置,JDK8开始为优化链表长度过长导致的性能问题从而引入了红黑树,当链表的长度大于8时会自动将链表转成红黑树。

JDK7中HashMap的源码解读

JDK7中HashMap采用Entry数组来存储键值对,每一个键值对组成了一个Entry实体,Entry类实际上是一个单向的链表结构,它具有Next指针,可以连接下一个Entry实体组成链表。

JDK7中HashMap源码中的主要字段

// 数组默认的大小    // 1 << 4,表示1,左移4位,变成10000,即16,以二进制形式运行,效率更高    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;    // 数组最大值    static final int MAXIMUM_CAPACITY = 1 << 30;    // 默认的负载因子    static final float DEFAULT_LOAD_FACTOR = 0.75f;    // 真正存放数据的数组    transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

HashMap中默认的数组容量为 16,负载因子为 0.75。Map 在使用过程中不断的往里面存放数据,当数量达到了 16 * 0.75 = 12 就需要将当前 16 的容量进行扩容,而扩容这个过程涉及到 rehash、复制数据等操作,所以非常消耗性能。因此通常建议能提前预估 HashMap 的大小最好,尽量的减少扩容带来的性能损耗。

JDK7中HashMap源码中的构造器

      /**  默认的初始化容量、默认的加载因子         * Constructs an empty <tt>HashMap</tt> with the default initial capacity         * (16) and the default load factor (0.75).       */      public HashMap() {    //16  0.75          this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);      }        /**       * Constructs an empty <tt>HashMap</tt> with the specified initial       * capacity and the default load factor (0.75).       *       * @param  initialCapacity the initial capacity.       * @throws IllegalArgumentException if the initial capacity is negative.       */      public HashMap(int initialCapacity) {          this(initialCapacity, DEFAULT_LOAD_FACTOR);      }        /**   做了两件事:1、为threshold、loadFactor赋值   2、调用init()       * Constructs an empty <tt>HashMap</tt> with the specified initial       * capacity and load factor.       *       * @param  initialCapacity the initial capacity       * @param  loadFactor      the load factor       * @throws IllegalArgumentException if the initial capacity is negative       *         or the load factor is nonpositive       */      public HashMap(int initialCapacity, float loadFactor) {          if (initialCapacity < 0)              throw new IllegalArgumentException("Illegal initial capacity: " +                                                 initialCapacity);          if (initialCapacity > MAXIMUM_CAPACITY)     //限制最大容量            initialCapacity = MAXIMUM_CAPACITY;          if (loadFactor <= 0 || Float.isNaN(loadFactor))     //检查 loadFactor              throw new IllegalArgumentException("Illegal load factor: " +                                                 loadFactor);          //真正在做的,只是记录下loadFactor、initialCpacity的值        this.loadFactor = loadFactor;       //记录下loadFactor          threshold = initialCapacity;        //初始的 阈值threshold=initialCapacity=16          init();      }        /**       * Constructs a new <tt>HashMap</tt> with the same mappings as the       * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with       * default load factor (0.75) and an initial capacity sufficient to       * hold the mappings in the specified <tt>Map</tt>.       *       * @param   m the map whose mappings are to be placed in this map       * @throws  NullPointerException if the specified map is null       */      public HashMap(Map<? extends K, ? extends V> m) {          this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,                        DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);          inflateTable(threshold);          putAllForCreate(m);        }

JDK7中HashMap源码中的put方法

      /**         * Associates the specified value with the specified key in this map.       * If the map previously contained a mapping for the key, the old       * value is replaced.       *       * @param key key with which the specified value is to be associated       * @param value value to be associated with the specified key       * @return the previous value associated with <tt>key</tt>, or       *         <tt>null</tt> if there was no mapping for <tt>key</tt>.       *         (A <tt>null</tt> return can also indicate that the map       *         previously associated <tt>null</tt> with <tt>key</tt>.)       */      public V put(K key, V value) {          if (table == EMPTY_TABLE) {              inflateTable(threshold);    //初始化表 (初始化、扩容 合并为了一个方法)        }            if (key == null)        //对key为null做特殊处理                return putForNullKey(value);            int hash = hash(key);           //计算hash值            int i = indexFor(hash, table.length);   //根据hash值计算出index下标            for (Entry<K,V> e = table[i]; e != null; e = e.next) {  //遍历下标为i处的链表            Object k;                if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {  //如果key值相同,覆盖旧值,返回新值                V oldValue = e.value;                    e.value = value;    //新值 覆盖 旧值                    e.recordAccess(this);   //do nothing                    return oldValue;    //返回旧值                }            }          modCount++;         //修改次数+1,类似于一个version number          addEntry(hash, key, value, i);          return null;      }          /**       * Adds a new entry with the specified key, value and hash code to       * the specified bucket.  It is the responsibility of this       * method to resize the table if appropriate.       *       * Subclass overrides this to alter the behavior of put method.       */      void addEntry(int hash, K key, V value, int bucketIndex) {          if ((size >= threshold) && (null != table[bucketIndex])) {  //如果size大于threshold && table在下标为index的地方已经有entry了            resize(2 * table.length);       //扩容,将数组长度变为原来两倍            hash = (null != key) ? hash(key) : 0;       //重新计算 hash 值            bucketIndex = indexFor(hash, table.length); //重新计算下标        }          createEntry(hash, key, value, bucketIndex);     //创建entry      }        /**       * Rehashes the contents of this map into a new array with a       * larger capacity.  This method is called automatically when the       * number of keys in this map reaches its threshold.       *       * If current capacity is MAXIMUM_CAPACITY, this method does not       * resize the map, but sets threshold to Integer.MAX_VALUE.       * This has the effect of preventing future calls.       *       * @param newCapacity the new capacity, MUST be a power of two;       *        must be greater than current capacity unless current       *        capacity is MAXIMUM_CAPACITY (in which case value       *        is irrelevant).       */      void resize(int newCapacity) {          Entry[] oldTable = table;          int oldCapacity = oldTable.length;          if (oldCapacity == MAXIMUM_CAPACITY) {  //状态检查            threshold = Integer.MAX_VALUE;              return;          }          Entry[] newTable = new Entry[newCapacity];      //实例化新的table          transfer(newTable, initHashSeedAsNeeded(newCapacity));  //赋值数组元素到新的数组        table = newTable;          threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);      }        /**       * Transfers all entries from current table to newTable.       */      void transfer(Entry[] newTable, boolean rehash) {          int newCapacity = newTable.length;          for (Entry<K,V> e : table) {              while(null != e) {                  Entry<K,V> next = e.next;                  if (rehash) {                      e.hash = null == e.key ? 0 : hash(e.key);       //对key进行hash                  }                  int i = indexFor(e.hash, newCapacity);      //用新的index来取模                e.next = newTable[i];                  newTable[i] = e;            //把元素存入新table新的新的index处                e = next;              }          }      }        /**       * Like addEntry except that this version is used when creating entries       * as part of Map construction or "pseudo-construction" (cloning,       * deserialization).  This version needn't worry about resizing the table.       *       * Subclass overrides this to alter the behavior of HashMap(Map),       * clone, and readObject.       */      void createEntry(int hash, K key, V value, int bucketIndex) {          Entry<K,V> e = table[bucketIndex];      //获取table中存的entry          table[bucketIndex] = new Entry<>(hash, key, value, e);   //将新的entry放到数组中,next指向旧的table[i]            size++;         //修改map中元素个数     }

JDK7中HashMap源码中的put方法

      /**         * Returns the value to which the specified key is mapped,       * or {@code null} if this map contains no mapping for the key.       *       * <p>More formally, if this map contains a mapping from a key       * {@code k} to a value {@code v} such that {@code (key==null ? k==null :       * key.equals(k))}, then this method returns {@code v}; otherwise       * it returns {@code null}.  (There can be at most one such mapping.)       *       * <p>A return value of {@code null} does not <i>necessarily</i>       * indicate that the map contains no mapping for the key; it's also       * possible that the map explicitly maps the key to {@code null}.       * The {@link #containsKey containsKey} operation may be used to       * distinguish these two cases.       *       * @see #put(Object, Object)       */      public V get(Object key) {          if (key == null)              return getForNullKey();          Entry<K,V> entry = getEntry(key);          return null == entry ? null : entry.getValue();      }        /**       * Returns the entry associated with the specified key in the       * HashMap.  Returns null if the HashMap contains no mapping       * for the key.       */      final Entry<K,V> getEntry(Object key) {          if (size == 0) {              return null;          }          int hash = (key == null) ? 0 : hash(key);          for (Entry<K,V> e = table[indexFor(hash, table.length)];               e != null;               e = e.next) {              Object k;              if (e.hash == hash &&                  ((k = e.key) == key || (key != null && key.equals(k))))                  return e;          }          return null;        }

JDK8中HashMap的源码解读

JDK8中HashMap采用Node数组来存储键值对,Node其实就是JDK7中的Entry,只不过是换了一个名字,同样每一个键值对组成了一个Node实体,然后组成链表。当 Hash 冲突严重时,链表会变的越来越长,这样在查询时的效率就会越来越低,JDK8所做的优化就是,当链表的长度达到8的时候会转变成红黑树TreeNode。

JDK8中HashMap源码中的主要字段

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;    static final int MAXIMUM_CAPACITY = 1 << 30;    static final float DEFAULT_LOAD_FACTOR = 0.75f;    // 用于判断是否需要将链表转换为红黑树的阈值    static final int TREEIFY_THRESHOLD = 8;    // 用于判断是否需要将红黑树转换为链表的阈值    static final int UNTREEIFY_THRESHOLD = 6;    static final int MIN_TREEIFY_CAPACITY = 64;    // 存放数据的数组    transient Node<K,V>[] table;

JDK8中HashMap源码中的构造器

      /**       * Constructs an empty <tt>HashMap</tt> with the default initial capacity       * (16) and the default load factor (0.75).       */      public HashMap() {          this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted        }        /**       * Constructs an empty <tt>HashMap</tt> with the specified initial       * capacity and the default load factor (0.75).       *       * @param  initialCapacity the initial capacity.       * @throws IllegalArgumentException if the initial capacity is negative.       */      public HashMap(int initialCapacity) {          this(initialCapacity, DEFAULT_LOAD_FACTOR);        }        /**       * Constructs an empty <tt>HashMap</tt> with the specified initial       * capacity and load factor.       *       * @param  initialCapacity the initial capacity       * @param  loadFactor      the load factor       * @throws IllegalArgumentException if the initial capacity is negative       *         or the load factor is nonpositive       */      public HashMap(int initialCapacity, float loadFactor) {          if (initialCapacity < 0)              throw new IllegalArgumentException("Illegal initial capacity: " +                                                 initialCapacity);          if (initialCapacity > MAXIMUM_CAPACITY)              initialCapacity = MAXIMUM_CAPACITY;          if (loadFactor <= 0 || Float.isNaN(loadFactor))              throw new IllegalArgumentException("Illegal load factor: " +                                                 loadFactor);          this.loadFactor = loadFactor;          this.threshold = tableSizeFor(initialCapacity);        }        /**       * Constructs a new <tt>HashMap</tt> with the same mappings as the       * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with       * default load factor (0.75) and an initial capacity sufficient to       * hold the mappings in the specified <tt>Map</tt>.       *       * @param   m the map whose mappings are to be placed in this map       * @throws  NullPointerException if the specified map is null       */      public HashMap(Map<? extends K, ? extends V> m) {          this.loadFactor = DEFAULT_LOAD_FACTOR;          putMapEntries(m, false);        }

JDK8中HashMap源码中的put方法

      /**       * Associates the specified value with the specified key in this map.       * If the map previously contained a mapping for the key, the old       * value is replaced.       *       * @param key key with which the specified value is to be associated       * @param value value to be associated with the specified key       * @return the previous value associated with <tt>key</tt>, or       *         <tt>null</tt> if there was no mapping for <tt>key</tt>.       *         (A <tt>null</tt> return can also indicate that the map       *         previously associated <tt>null</tt> with <tt>key</tt>.)       */      public V put(K key, V value) {          return putVal(hash(key), key, value, false, true);        }        /**       * Implements Map.put and related methods.  添加元素     *       * @param hash hash for key       * @param key the key       * @param value the value to put       * @param onlyIfAbsent if true, don't change existing value       * @param evict if false, the table is in creation mode.       * @return previous value, or null if none       */      final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                     boolean evict) {          Node<K,V>[] tab; Node<K,V> p; int n, i;          if ((tab = table) == null || (n = tab.length) == 0)     //若table为null              n = (tab = resize()).length;                        //resize          if ((p = tab[i = (n - 1) & hash]) == null)              //计算下标i,取出i处的元素为p,如果p为null              tab[i] = newNode(hash, key, value, null);       //创建新的node,放到数组中        else {                  //若 p!=null              Node<K,V> e; K k;              if (p.hash == hash &&                  ((k = p.key) == key || (key != null && key.equals(k))))     //若key相同                e = p;      //直接覆盖            else if (p instanceof TreeNode)     //如果为 树节点                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);     //放到树中            else {                                          //如果key不相同,也不是treeNode                  for (int binCount = 0; ; ++binCount) {      //遍历i处的链表                    if ((e = p.next) == null) {             //找到尾部                        p.next = newNode(hash, key, value, null);       //在末尾添加一个node                          if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st    //如果链表长度  >= 8                              treeifyBin(tab, hash);             //将链表转成共黑树                        break;                      }                      if (e.hash == hash &&                          ((k = e.key) == key || (key != null && key.equals(k))))     //若果key相同,直接退出循环                        break;                      p = e;                  }              }              if (e != null) { // existing mapping for key                  V oldValue = e.value;                  if (!onlyIfAbsent || oldValue == null)                      e.value = value;                  afterNodeAccess(e);                  return oldValue;              }          }          ++modCount;          if (++size > threshold)              resize();          afterNodeInsertion(evict);          return null;        }        /**       * Replaces all linked nodes in bin at index for given hash unless       * table is too small, in which case resizes instead.       */      final void treeifyBin(Node<K,V>[] tab, int hash) {          int n, index; Node<K,V> e;          if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)              resize();          else if ((e = tab[index = (n - 1) & hash]) != null) {              TreeNode<K,V> hd = null, tl = null;              do {                  TreeNode<K,V> p = replacementTreeNode(e, null);                  if (tl == null)                      hd = p;                  else {                      p.prev = tl;                      tl.next = p;                  }                  tl = p;              } while ((e = e.next) != null);              if ((tab[index] = hd) != null)                  hd.treeify(tab);          }        }       /**       * Initializes or doubles table size.  If null, allocates in       * accord with initial capacity target held in field threshold.       * Otherwise, because we are using power-of-two expansion, the       * elements from each bin must either stay at same index, or move       * with a power of two offset in the new table.       *       * @return the table       */      final Node<K,V>[] resize() {          Node<K,V>[] oldTab = table;          int oldCap = (oldTab == null) ? 0 : oldTab.length;  // 如果 旧数组为null就讲旧的容量看做是0,否则用旧的table长度当做容量        int oldThr = threshold;          int newCap, newThr = 0;          if (oldCap > 0) {              if (oldCap >= MAXIMUM_CAPACITY) {                  threshold = Integer.MAX_VALUE;                  return oldTab;              }              else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&                       oldCap >= DEFAULT_INITIAL_CAPACITY)                  newThr = oldThr << 1; // double threshold          }          else if (oldThr > 0) // initial capacity was placed in threshold              newCap = oldThr;          else {               // zero initial threshold signifies using defaults              newCap = DEFAULT_INITIAL_CAPACITY;              newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);          }          if (newThr == 0) {              float ft = (float)newCap * loadFactor;              newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?                        (int)ft : Integer.MAX_VALUE);          }          threshold = newThr;          @SuppressWarnings({"rawtypes","unchecked"})          Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];     //创建新的数组        table = newTab;                                         //赋值给table          if (oldTab != null) {              for (int j = 0; j < oldCap; ++j) {                  Node<K,V> e;                  if ((e = oldTab[j]) != null) {                      oldTab[j] = null;                      if (e.next == null)                          newTab[e.hash & (newCap - 1)] = e;                      else if (e instanceof TreeNode)                          ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);                      else { // preserve order                          Node<K,V> loHead = null, loTail = null;                          Node<K,V> hiHead = null, hiTail = null;                          Node<K,V> next;                          do {                              next = e.next;                              if ((e.hash & oldCap) == 0) {                                  if (loTail == null)                                      loHead = e;                                  else                                      loTail.next = e;                                  loTail = e;                              }                              else {                                  if (hiTail == null)                                      hiHead = e;                                  else                                      hiTail.next = e;                                  hiTail = e;                              }                          } while ((e = next) != null);                          if (loTail != null) {                              loTail.next = null;                              newTab[j] = loHead;                          }                          if (hiTail != null) {                              hiTail.next = null;                              newTab[j + oldCap] = hiHead;                          }                      }                  }              }          }          return newTab;        }

JDK8中HashMap源码中的get方法

      /**         * Returns the value to which the specified key is mapped,       * or {@code null} if this map contains no mapping for the key.       *       * <p>More formally, if this map contains a mapping from a key       * {@code k} to a value {@code v} such that {@code (key==null ? k==null :       * key.equals(k))}, then this method returns {@code v}; otherwise       * it returns {@code null}.  (There can be at most one such mapping.)       *       * <p>A return value of {@code null} does not <i>necessarily</i>       * indicate that the map contains no mapping for the key; it's also       * possible that the map explicitly maps the key to {@code null}.       * The {@link #containsKey containsKey} operation may be used to       * distinguish these two cases.       *       * @see #put(Object, Object)       */      public V get(Object key) {          Node<K,V> e;          return (e = getNode(hash(key), key)) == null ? null : e.value;        }        /**       * Implements Map.get and related methods.       *       * @param hash hash for key       * @param key the key       * @return the node, or null if none       */      final Node<K,V> getNode(int hash, Object key) {          Node<K,V>[] tab; Node<K,V> first, e; int n; K k;          if ((tab = table) != null && (n = tab.length) > 0 &&              (first = tab[(n - 1) & hash]) != null) {              if (first.hash == hash && // always check first node                  ((k = first.key) == key || (key != null && key.equals(k))))                  return first;              if ((e = first.next) != null) {                  if (first instanceof TreeNode)                      return ((TreeNode<K,V>)first).getTreeNode(hash, key);                  do {                      if (e.hash == hash &&                          ((k = e.key) == key || (key != null && key.equals(k))))                          return e;                  } while ((e = e.next) != null);              }          }          return null;        }

ConcurrentHashMap源码解读

ConcurrentHashMap是一个线程安全的HashMap实现,ConcurrentHashMap在JDK7和JDK8中的实现差别比较大,JDK7中ConcurrentHashMap是使用Segment数组来存放数据,一个Segment就相当于一个HashMap的数据结构,每个Segment使用一个锁。JDK8之后Segment虽保留,但仅是为了兼容旧版本,已经不再使用,JDK8中ConcurrentHashMap使用和HashMap一样的数据结构Node数组来存储数据,每个数组位置使用一个锁。

JDK7中的ConcurrentHashMap源码解读

JDK7中ConcurrentHashMap的底层Segment组,而Segment其实就是特殊的HashMap,Segment的数据结构跟HashMap一样,同时它继承了ReentrantLock,通过ReentrantLock提供的锁实现了线程的安全。ConcurrentHashMap使用分段锁技术,将数据分成一段一段的存储,每个Segment就是一段,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问,能够实现并发访问,Segment数组的长度就是ConcurrentHashMap的线程并行级别,Segment数组默认的长度为16,也就是说最多同时可以有16个线程去访问ConcurrentHashMap。segment 数组不能扩容,而是对 segment 数组某个位置的segmen内部的数组HashEntry[] 进行扩容,扩容后容量为原来的 2 倍,该方法没有考虑并发,因为执行该方法之前已经获取了锁。

JDK7中的ConcurrentHashMap源码中的主要字段

// 数组默认大小    static final int DEFAULT_INITIAL_CAPACITY = 16;    // 默认的负载因子    static final float DEFAULT_LOAD_FACTOR = 0.75f;    // 默认线程并发度    static final int DEFAULT_CONCURRENCY_LEVEL = 16;    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;    static final int MAX_SEGMENTS = 1 << 16;    // 数组最大大小    static final int MAXIMUM_CAPACITY = 1 << 30;    static final int MAXIMUM_CAPACITY = 1 << 30;    static final int RETRIES_BEFORE_LOCK = 2;

JDK7中的ConcurrentHashMap源码中的构造器

      /**         * Creates a new, empty map with a default initial capacity (16),       * load factor (0.75) and concurrencyLevel (16).       */      public ConcurrentHashMap() {          this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);        }        /**       * Creates a new, empty map with the specified initial capacity,       * and with default load factor (0.75) and concurrencyLevel (16).       *       * @param initialCapacity the initial capacity. The implementation       * performs internal sizing to accommodate this many elements.       * @throws IllegalArgumentException if the initial capacity of       * elements is negative.       */      public ConcurrentHashMap(int initialCapacity) {          this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);        }        /**       * Creates a new, empty map with the specified initial capacity       * and load factor and with the default concurrencyLevel (16).       *       * @param initialCapacity The implementation performs internal       * sizing to accommodate this many elements.       * @param loadFactor  the load factor threshold, used to control resizing.       * Resizing may be performed when the average number of elements per       * bin exceeds this threshold.       * @throws IllegalArgumentException if the initial capacity of       * elements is negative or the load factor is nonpositive       *       * @since 1.6       */      public ConcurrentHashMap(int initialCapacity, float loadFactor) {          this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);        }        /**       * Creates a new, empty map with the specified initial       * capacity, load factor and concurrency level.       *       * @param initialCapacity the initial capacity. The implementation       * performs internal sizing to accommodate this many elements.       * @param loadFactor  the load factor threshold, used to control resizing.       * Resizing may be performed when the average number of elements per       * bin exceeds this threshold.       * @param concurrencyLevel the estimated number of concurrently       * updating threads. The implementation performs internal sizing       * to try to accommodate this many threads.       * @throws IllegalArgumentException if the initial capacity is       * negative or the load factor or concurrencyLevel are       * nonpositive.       */      @SuppressWarnings("unchecked")      public ConcurrentHashMap(int initialCapacity,                               float loadFactor, int concurrencyLevel) {          if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)  //参数检查            throw new IllegalArgumentException();          if (concurrencyLevel > MAX_SEGMENTS)    //ConcurrentcyLevel实际上就是最大并发数            concurrencyLevel = MAX_SEGMENTS;          // Find power-of-two sizes best matching arguments          int sshift = 0;          int ssize = 1;          while (ssize < concurrencyLevel) {              ++sshift;              ssize <<= 1;          }          this.segmentShift = 32 - sshift;          this.segmentMask = ssize - 1;          if (initialCapacity > MAXIMUM_CAPACITY)              initialCapacity = MAXIMUM_CAPACITY;          int c = initialCapacity / ssize;          if (c * ssize < initialCapacity)              ++c;          int cap = MIN_SEGMENT_TABLE_CAPACITY;          while (cap < c)              cap <<= 1;          // create segments and segments[0]          Segment<K,V> s0 =              new Segment<K,V>(loadFactor, (int)(cap * loadFactor),                               (HashEntry<K,V>[])new HashEntry[cap]);     //创建一个segment          Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];         //创建一个segment数组        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]     //将s0设置为ss的第一个元素        this.segments = ss;             //将ss作为segments        }

JDK7中的ConcurrentHashMap源码中put方法

      /**         * Maps the specified key to the specified value in this table.       * Neither the key nor the value can be null.       *       * <p> The value can be retrieved by calling the <tt>get</tt> method       * with a key that is equal to the original key.       *       * @param key key with which the specified value is to be associated       * @param value value to be associated with the specified key       * @return the previous value associated with <tt>key</tt>, or       *         <tt>null</tt> if there was no mapping for <tt>key</tt>       * @throws NullPointerException if the specified key or value is null       */      @SuppressWarnings("unchecked")      public V put(K key, V value) {          Segment<K,V> s;          if (value == null)              throw new NullPointerException();            int hash = hash(key);       // 计算Hash值            int j = (hash >>> segmentShift) & segmentMask;      //计算下标j            if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck               (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment              s = ensureSegment(j);       //若j处有segment就返回,若没有就创建并返回        return s.put(key, hash, value, false);  //将值put到segment中去    }           // Segment 中put数据的方法           final V put(K key, int hash, V value, boolean onlyIfAbsent) {                HashEntry<K,V> node = tryLock() ? null :                  scanAndLockForPut(key, hash, value);        //如果tryLock成功,就返回null,否则。。。V oldValue;              try {                  HashEntry<K,V>[] tab = table;                  int index = (tab.length - 1) & hash;        //根据table数组的长度 和 hash值计算index小标                HashEntry<K,V> first = entryAt(tab, index); //找到table数组在 index处链表的头部                for (HashEntry<K,V> e = first;;) {      //从first开始遍历链表                    if (e != null) {                    //若e!=null                          K k;                          if ((k = e.key) == key ||                              (e.hash == hash && key.equals(k))) {        //如果key相同                            oldValue = e.value;                 //获取旧值                            if (!onlyIfAbsent) {                //若absent=false                                  e.value = value;                //覆盖旧值                                ++modCount;                     //                              }                              break;      //若已经找到,就退出链表遍历                        }                          e = e.next;     //若key不相同,继续遍历                    }                      else {              //直到e为null                          if (node != null)   //将元素放到链表头部                            node.setNext(first);                          else                              node = new HashEntry<K,V>(hash, key, value, first); //创建新的Entry                          int c = count + 1;      //count 用来记录元素个数                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)     //如果hashmap元素个数超过threshold,并且table长度小于最大容量                            rehash(node);       //rehash跟resize的功能差不多,将table的长度变为原来的两倍,重新打包entries,并将给定的node添加到新的table                          else        //如果还有容量                            setEntryAt(tab, index, node);   //就在index处添加链表节点                        ++modCount;     //修改操作数                        count = c;      //将count+1                          oldValue = null;    //                          break;                      }                  }              } finally {                  unlock();           //执行完操作后,释放锁            }              return oldValue;        //返回oldValue            }           /**  将table的长度变为原来的两倍,重新打包entries,并将给定的node添加到新的table           * Doubles size of table and repacks entries, also adding the           * given node to new table           */          @SuppressWarnings("unchecked")          private void rehash(HashEntry<K,V> node) {              /*               * Reclassify nodes in each list to new table.  Because we               * are using power-of-two expansion, the elements from               * each bin must either stay at same index, or move with a               * power of two offset. We eliminate unnecessary node               * creation by catching cases where old nodes can be               * reused because their next fields won't change.               * Statistically, at the default threshold, only about               * one-sixth of them need cloning when a table               * doubles. The nodes they replace will be garbage               * collectable as soon as they are no longer referenced by               * any reader thread that may be in the midst of               * concurrently traversing table. Entry accesses use plain               * array indexing because they are followed by volatile               * table write.               */              HashEntry<K,V>[] oldTable = table;              int oldCapacity = oldTable.length;              int newCapacity = oldCapacity << 1;              threshold = (int)(newCapacity * loadFactor);              HashEntry<K,V>[] newTable =                  (HashEntry<K,V>[]) new HashEntry[newCapacity];              int sizeMask = newCapacity - 1;              for (int i = 0; i < oldCapacity ; i++) {                  HashEntry<K,V> e = oldTable[i];                  if (e != null) {                      HashEntry<K,V> next = e.next;                      int idx = e.hash & sizeMask;                      if (next == null)   //  Single node on list                          newTable[idx] = e;                      else { // Reuse consecutive sequence at same slot                          HashEntry<K,V> lastRun = e;                          int lastIdx = idx;                          for (HashEntry<K,V> last = next;                               last != null;                               last = last.next) {                              int k = last.hash & sizeMask;                              if (k != lastIdx) {                                  lastIdx = k;                                  lastRun = last;                              }                          }                          newTable[lastIdx] = lastRun;                          // Clone remaining nodes                          for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {                              V v = p.value;                              int h = p.hash;                              int k = h & sizeMask;                              HashEntry<K,V> n = newTable[k];                              newTable[k] = new HashEntry<K,V>(h, p.key, v, n);                          }                      }                  }              }              int nodeIndex = node.hash & sizeMask; // add the new node              node.setNext(newTable[nodeIndex]);              newTable[nodeIndex] = node;              table = newTable;            }

JDK7中的ConcurrentHashMap源码中get方法

      /**         * Returns the value to which the specified key is mapped,       * or {@code null} if this map contains no mapping for the key.       *       * <p>More formally, if this map contains a mapping from a key       * {@code k} to a value {@code v} such that {@code key.equals(k)},       * then this method returns {@code v}; otherwise it returns       * {@code null}.  (There can be at most one such mapping.)       *       * @throws NullPointerException if the specified key is null       */      public V get(Object key) {          Segment<K,V> s; // manually integrate access methods to reduce overhead          HashEntry<K,V>[] tab;          int h = hash(key);          long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;          if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&              (tab = s.table) != null) {              for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile                       (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);                   e != null; e = e.next) {                  K k;                  if ((k = e.key) == key || (e.hash == h && key.equals(k)))                      return e.value;              }          }          return null;        }

JDK8中的ConcurrentHashMap源码解读

JDK8中的ConcurrentHashMap取消了基于 Segment 的分段锁思想,改用 CAS + synchronized 控制并发操作,锁的粒度变得更小,并发度更高。并且追随JDK8的HashMap底层实现,使用数组+链表+红黑树进行数据存储。

JDK8中的ConcurrentHashMap源码中的主要字段

private static final int MAXIMUM_CAPACITY = 1 << 30;    private static final int DEFAULT_CAPACITY = 16;    private static final float LOAD_FACTOR = 0.75f;    static final int TREEIFY_THRESHOLD = 8;    static final int UNTREEIFY_THRESHOLD = 6;    static final int MIN_TREEIFY_CAPACITY = 64;    private static final int MIN_TRANSFER_STRIDE = 16;    static final int MOVED     = -1; // hash for forwarding nodes       //转发节点的hash值    static final int TREEBIN   = -2; // hash for roots of trees         //树的根节点的hash值    static final int RESERVED  = -3; // hash for transient reservations //临时节点的 hash值    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash //正常节点的hash值

JDK8中的ConcurrentHashMap源码中构造器

      /**         * Creates a new, empty map with the default initial table size (16).       */      public ConcurrentHashMap() {      }      /**       * Creates a new, empty map with an initial table size       * accommodating the specified number of elements without the need       * to dynamically resize.       *       * @param initialCapacity The implementation performs internal       * sizing to accommodate this many elements.       * @throws IllegalArgumentException if the initial capacity of       * elements is negative       */      public ConcurrentHashMap(int initialCapacity) {          if (initialCapacity < 0)              throw new IllegalArgumentException();          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?                     MAXIMUM_CAPACITY :                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));          this.sizeCtl = cap;        }        /**       * Creates a new, empty map with an initial table size based on       * the given number of elements ({@code initialCapacity}) and       * initial table density ({@code loadFactor}).       *       * @param initialCapacity the initial capacity. The implementation       * performs internal sizing to accommodate this many elements,       * given the specified load factor.       * @param loadFactor the load factor (table density) for       * establishing the initial table size       * @throws IllegalArgumentException if the initial capacity of       * elements is negative or the load factor is nonpositive       *       * @since 1.6       */      public ConcurrentHashMap(int initialCapacity, float loadFactor) {          this(initialCapacity, loadFactor, 1);        }        /**       * Creates a new, empty map with an initial table size based on       * the given number of elements ({@code initialCapacity}), table       * density ({@code loadFactor}), and number of concurrently       * updating threads ({@code concurrencyLevel}).       *       * @param initialCapacity the initial capacity. The implementation       * performs internal sizing to accommodate this many elements,       * given the specified load factor.       * @param loadFactor the load factor (table density) for       * establishing the initial table size       * @param concurrencyLevel the estimated number of concurrently       * updating threads. The implementation may use this value as       * a sizing hint.       * @throws IllegalArgumentException if the initial capacity is       * negative or the load factor or concurrencyLevel are       * nonpositive       */      public ConcurrentHashMap(int initialCapacity,                               float loadFactor, int concurrencyLevel) {          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)              throw new IllegalArgumentException();          if (initialCapacity < concurrencyLevel)   // Use at least as many bins              initialCapacity = concurrencyLevel;   // as estimated threads          long size = (long)(1.0 + (long)initialCapacity / loadFactor);          int cap = (size >= (long)MAXIMUM_CAPACITY) ?              MAXIMUM_CAPACITY : tableSizeFor((int)size);          this.sizeCtl = cap;        }

JDK8中的ConcurrentHashMap源码中的put方法

      /**         * Maps the specified key to the specified value in this table.       * Neither the key nor the value can be null.       *       * <p>The value can be retrieved by calling the {@code get} method       * with a key that is equal to the original key.       *       * @param key key with which the specified value is to be associated       * @param value value to be associated with the specified key       * @return the previous value associated with {@code key}, or       *         {@code null} if there was no mapping for {@code key}       * @throws NullPointerException if the specified key or value is null       */      public V put(K key, V value) {          return putVal(key, value, false);        }        /** Implementation for put and putIfAbsent */      final V putVal(K key, V value, boolean onlyIfAbsent) {          if (key == null || value == null) throw new NullPointerException();            int hash = spread(key.hashCode());      //计算hash值            int binCount = 0;            for (Node<K,V>[] tab = table;;) {   //自旋                Node<K,V> f; int n, i, fh;                if (tab == null || (n = tab.length) == 0)       //table==null || table.length==0                  tab = initTable();                          //就initTable              else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {    //若下标 i 处的元素为null                  if (casTabAt(tab, i, null,                           //直接用CAS操作,i处的元素                             new Node<K,V>(hash, key, value, null)))                      break;                   // no lock when adding to empty bin   想emptybin中假如元素的时候,不需要加锁            }              else if ((fh = f.hash) == MOVED)    //若下标 i 处的元素不为null,且f.hash==MOVED MOVED为常量值-1                  tab = helpTransfer(tab, f);     //              else {                              //如果是一般的节点                V oldVal = null;                  synchronized (f) {              //当头部元素不为null,且不需要转换成树时,需要进行同步操作                    if (tabAt(tab, i) == f) {                          if (fh >= 0) {          //若 链表头部hash值 >=0                              binCount = 1;                              for (Node<K,V> e = f;; ++binCount) {                                  K ek;                                  if (e.hash == hash &&                                      ((ek = e.key) == key ||                                       (ek != null && key.equals(ek)))) {     //如果key相同                                    oldVal = e.val;                                      if (!onlyIfAbsent)      //且不为absent                                          e.val = value;      //旧值覆盖新值                                    break;                                  }                                  Node<K,V> pred = e;                                  if ((e = e.next) == null), {     //如果链表遍历完成,还没退出,说明没有相同的key存在,在尾部添加节点                                    pred.next = new Node<K,V>(hash, key,                                                                value, null);                                      break;                                  }                              }                          }                          else if (f instanceof TreeBin) {        //如果f是Tree的节点                            Node<K,V> p;                              binCount = 2;                              if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,                                                             value)) != null) {                                  oldVal = p.val;                                  if (!onlyIfAbsent)                                      p.val = value;                              }                          }                      }                  }                  if (binCount != 0) {                      if (binCount >= TREEIFY_THRESHOLD)                          treeifyBin(tab, i);                      if (oldVal != null)                          return oldVal;                      break;                  }              }          }          addCount(1L, binCount);          return null;        }        /**       * Initializes table, using the size recorded in sizeCtl.       *///通过CAS抢sizeCtl,来抢占initTable的资格,其他线程自旋等待,直到table不为null      private final Node<K,V>[] initTable() {          Node<K,V>[] tab; int sc;          while ((tab = table) == null || tab.length == 0) {              if ((sc = sizeCtl) < 0)                  Thread.yield(); // lost initialization race; just spin  //线程让步,让其他线程优先执行            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {                  try {                      if ((tab = table) == null || tab.length == 0) {                          int n = (sc > 0) ? sc : DEFAULT_CAPACITY;                          @SuppressWarnings("unchecked")                          Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; //初始化数组                        table = tab = nt;               //将nt赋值给table                          sc = n - (n >>> 2);                      }                  } finally {                      sizeCtl = sc;                  }                  break;              }          }          return tab;        }

JDK8中的ConcurrentHashMap源码中的get方法

      /**       * Returns the value to which the specified key is mapped,       * or {@code null} if this map contains no mapping for the key.       *       * <p>More formally, if this map contains a mapping from a key       * {@code k} to a value {@code v} such that {@code key.equals(k)},       * then this method returns {@code v}; otherwise it returns       * {@code null}.  (There can be at most one such mapping.)       *       * @throws NullPointerException if the specified key is null       */      public V get(Object key) {          Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;          int h = spread(key.hashCode());          if ((tab = table) != null && (n = tab.length) > 0 &&              (e = tabAt(tab, (n - 1) & h)) != null) {              if ((eh = e.hash) == h) {                  if ((ek = e.key) == key || (ek != null && key.equals(ek)))                      return e.val;              }              else if (eh < 0)                  return (p = e.find(h, key)) != null ? p.val : null;              while ((e = e.next) != null) {                  if (e.hash == h &&                      ((ek = e.key) == key || (ek != null && key.equals(ek))))                      return e.val;              }          }          return null;        }