torch.nn.init

  • 2019 年 10 月 7 日
  • 筆記

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/weixin_36670529/article/details/101194024

torch.nn.init.calculate_gain(nonlinearity, param=None)[source]

Return the recommended gain value for the given nonlinearity function. The values are as follows:

nonlinearity

gain

Linear / Identity

1

Conv{1,2,3}D

1

Sigmoid

1

Tanh

ReLU

Leaky Relu

​Parameters

  • nonlinearity – the non-linear function (nn.functional name)
  • param – optional parameter for the non-linear function

Examples

>>> gain = nn.init.calculate_gain('leaky_relu', 0.2)  # leaky_relu with negative_slope=0.2

torch.nn.init.uniform_(tensor, a=0.0, b=1.0)[source]

Fills the input Tensor with values drawn from the uniform distribution U(a,b)mathcal{U}(a, b)U(a,b) .

Parameters

  • tensor – an n-dimensional torch.Tensor
  • a – the lower bound of the uniform distribution
  • b – the upper bound of the uniform distribution

Examples

>>> w = torch.empty(3, 5)  >>> nn.init.uniform_(w)

torch.nn.init.normal_(tensor, mean=0.0, std=1.0)[source]

Fills the input Tensor with values drawn from the normal distribution

Parameters

  • tensor – an n-dimensional torch.Tensor
  • mean – the mean of the normal distribution
  • std – the standard deviation of the normal distribution

Examples

>>> w = torch.empty(3, 5)  >>> nn.init.normal_(w)

torch.nn.init.constant_(tensor, val)[source]

Fills the input Tensor with the value valtext{val}val .

Parameters

  • tensor – an n-dimensional torch.Tensor
  • val – the value to fill the tensor with

Examples

>>> w = torch.empty(3, 5)  >>> nn.init.constant_(w, 0.3)

torch.nn.init.ones_(tensor)[source]

Fills the input Tensor with the scalar value 1.

Parameters

tensor – an n-dimensional torch.Tensor

Examples

>>> w = torch.empty(3, 5)  >>> nn.init.ones_(w)

torch.nn.init.zeros_(tensor)[source]

Fills the input Tensor with the scalar value 0.

Parameters

tensor – an n-dimensional torch.Tensor

Examples

>>> w = torch.empty(3, 5)  >>> nn.init.zeros_(w)

torch.nn.init.eye_(tensor)[source]

Fills the 2-dimensional input Tensor with the identity matrix. Preserves the identity of the inputs in Linear layers, where as many inputs are preserved as possible.

Parameters

tensor – a 2-dimensional torch.Tensor

Examples

>>> w = torch.empty(3, 5)  >>> nn.init.eye_(w)

torch.nn.init.dirac_(tensor)[source]

Fills the {3, 4, 5}-dimensional input Tensor with the Dirac delta function. Preserves the identity of the inputs in Convolutional layers, where as many input channels are preserved as possible.

Parameters

tensor – a {3, 4, 5}-dimensional torch.Tensor

Examples

>>> w = torch.empty(3, 16, 5, 5)  >>> nn.init.dirac_(w)

torch.nn.init.xavier_uniform_(tensor, gain=1.0)[source]

Fills the input Tensor with values according to the method described in Understanding the difficulty of training deep feedforward neural networks – Glorot, X. & Bengio, Y. (2010), using a uniform distribution. The resulting tensor will have values sampled from

where

Also known as Glorot initialization.

Parameters

  • tensor – an n-dimensional torch.Tensor
  • gain – an optional scaling factor

Examples

>>> w = torch.empty(3, 5)  >>> nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))

torch.nn.init.xavier_normal_(tensor, gain=1.0)[source]

Fills the input Tensor with values according to the method described in Understanding the difficulty of training deep feedforward neural networks – Glorot, X. & Bengio, Y. (2010), using a normal distribution. The resulting tensor will have values sampled from

where

Also known as Glorot initialization.

Parameters

  • tensor – an n-dimensional torch.Tensor
  • gain – an optional scaling factor

Examples

>>> w = torch.empty(3, 5)  >>> nn.init.xavier_normal_(w)

torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')[source]

Fills the input Tensor with values according to the method described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification – He, K. et al. (2015), using a uniform distribution. The resulting tensor will have values sampled from

where

Also known as He initialization.

Parameters

  • tensor – an n-dimensional torch.Tensor
  • a – the negative slope of the rectifier used after this layer (0 for ReLU by default)
  • mode – either 'fan_in' (default) or 'fan_out'. Choosing 'fan_in' preserves the magnitude of the variance of the weights in the forward pass. Choosing 'fan_out' preserves the magnitudes in the backwards pass.
  • nonlinearity – the non-linear function (nn.functional name), recommended to use only with 'relu' or 'leaky_relu' (default).

Examples

>>> w = torch.empty(3, 5)  >>> nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')

torch.nn.init.kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')[source]

Fills the input Tensor with values according to the method described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification – He, K. et al. (2015), using a normal distribution. The resulting tensor will have values sampled from

where

Also known as He initialization.

Parameters

  • tensor – an n-dimensional torch.Tensor
  • a – the negative slope of the rectifier used after this layer (0 for ReLU by default)
  • mode – either 'fan_in' (default) or 'fan_out'. Choosing 'fan_in' preserves the magnitude of the variance of the weights in the forward pass. Choosing 'fan_out' preserves the magnitudes in the backwards pass.
  • nonlinearity – the non-linear function (nn.functional name), recommended to use only with 'relu' or 'leaky_relu' (default).

Examples

>>> w = torch.empty(3, 5)  >>> nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')

torch.nn.init.orthogonal_(tensor, gain=1)[source]

Fills the input Tensor with a (semi) orthogonal matrix, as described in Exact solutions to the nonlinear dynamics of learning in deep linear neural networks – Saxe, A. et al. (2013). The input tensor must have at least 2 dimensions, and for tensors with more than 2 dimensions the trailing dimensions are flattened.

Parameters

  • tensor – an n-dimensional torch.Tensor, where n≥2n geq 2n≥2
  • gain – optional scaling factor

Examples

>>> w = torch.empty(3, 5)  >>> nn.init.orthogonal_(w)

torch.nn.init.sparse_(tensor, sparsity, std=0.01)[source]

Fills the 2D input Tensor as a sparse matrix, where the non-zero elements will be drawn from the normal distribution

, as described in Deep learning via Hessian-free optimization – Martens, J. (2010).

Parameters

  • tensor – an n-dimensional torch.Tensor
  • sparsity – The fraction of elements in each column to be set to zero
  • std – the standard deviation of the normal distribution used to generate the non-zero values

Examples

>>> w = torch.empty(3, 5)  >>> nn.init.sparse_(w, sparsity=0.1)