PART.01磨刀事半,砍柴功倍 第一部分以算法竞赛的通用化流程为主,介绍竞赛中各个部分的核心内容和具体工作,且每章都配有具体的实战部分,以便加深理解。PART.02物以类聚,人以群分 第二部分主要介绍用户画像相关的问题,构建完善的标签体系是用户画像的核心,也是解决用户画像类赛题的关键,比如个性化推荐和金融风控等问题都需要以用户画像作为支撑。为了帮助读者加快对此类竞赛问题的学习、理解,会讲解具体的竞赛案例,即 Kaggle 平台的 Elo Merchant Category Recommendation。
(题目背景:想象一下,当你在一个不熟悉的地方饿着肚子想要找好吃的东西时,你是不是会得到基于你的个人喜好而被专属推荐的餐馆,且该推荐还附带着你的信用卡提供商为你提供的附近餐馆的折扣信息。目前,巴西最大的支付品牌之一 Elo 已经与商家建立了合作关系,以便向顾客提供促销或折扣活动。但这些促销活动对顾客和商家都有益吗?顾客喜欢他们的活动体验吗?商家能够看到重复交易吗?要回答这些问题,个性化是关键。Elo 建立了机器学习模型,以了解顾客生命周期中从食品到购物等最重要方面的偏好。但到目前为止,那些学习模型都不是专门为个人或个人资料量身定做的,这也就是这场竞赛举办的原因。在这场竞赛中,需要参赛者开发算法,通过发现顾客忠诚度的信号,识别并为个人提供最相关的机会。你的意见将改善顾客的生活,帮助 Elo 减少不必要的活动,为顾客创造精准正确的体验。)PART.03以史为鉴,未来可期 第三部分以时间序列预测问题为主,先讲述这类问题的常见解题思路和技巧,然后分析两个具体的实战案例,分别是天池平台的全球城市计算 AI 挑战赛和Kaggle 平台的Corporación Favorita Grocery Sales Forecasting。
在本文(仅限AI研习社社区网站端)留言区留言,聊聊算法竞赛!参加过算法竞赛的伙伴们来分享一下自己的准备经验。正在准备参加竞赛的伙伴们来说说自己遇到的问题。我们会在精选留言中选出 3 位获得赠书。在综合留言质量(留言是敷衍还是走心)和留言点赞最高(注:点赞最高的前3不意味着一定会中奖)的读者中选出3位读者获得赠书。获得赠书的读者请联系 AI 研习社客服(AIyanxishe3)。